\(\frac{2012}{1001}+\frac{2012}{1002}+\frac{2012}{1003}+...+\frac{2012}{2000}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

TUI MỚI LỚP 5 THÔI

23 tháng 3 2018

1/ (69.210+1210)+(219.273+15.49.94)  = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39

218.39(2+3.22+5)=19.218.39

19 tháng 7 2018

sao bạn lại nhắn vớ va vớ vậy PHẠM ĐỨC PHÚC

14 tháng 12 2016

Ta có:

A=-2012/4025=>-2012/4025x2=-4024/4025

B=-1999/3997=>-1999/3997x2=-3998/3997

Ta có: 4024/4025<1<3998/3997

=>4024/4025<3998/3997

=>-4024/4025>-3998/3997

=>-2012/4025>-1999/3997

5 tháng 1 2020

Có ai biết làm câu b) ko vậy, mình ko biết làm, giúp mình với!!

23 tháng 1 2016

6567 đồng

tick nha

14 tháng 4 2017

@Ace Legona

19 tháng 7 2018

clmm gửi gì v

5 tháng 1 2020

Bài 1:

\(A=3^{21};B=2^{31}.\)

Ta có:

\(3^{21}=\left(3^7\right)^3=2187^3.\)

\(2^{31}< 2^{33}=\left(2^{11}\right)^3=2048^3.\)

\(2187>2048\) nên \(2187^3>2048^3.\)

\(\Rightarrow3^{21}>2^{33}.\)

\(\Rightarrow3^{21}>2^{31}.\)

Hay \(A>B.\)

Bài 2:

Sắp xếp 100 số đã cho theo thứ tự tăng dần, chẳng hạn:

\(a_1\le a_2\le a_3\le...\le a_{100}.\)

Các số này đều khác 0 (vì nếu có 1 thừa số bằng 0 thì tích của nó với hai thừa số khác cũng bằng 0, trái với đề bài).

Xét tích \(a_{98}.a_{99}.a_{100}< 0\)

\(\Rightarrow a_{98}< 0\) (vì nếu \(a_{98}>0\Rightarrow\left\{{}\begin{matrix}a_{99}>0\\a_{100}>0\end{matrix}\right.\) , tích của ba số này không thể là một số âm).

\(\Rightarrow a_1,a_2,a_3,...,a_{98}\) là các số âm.

Xét tích \(a_1.a_2.a_{99}< 0\)

\(a_1.a_2>0.\)

\(\Rightarrow a_{99}< 0.\)

Xét tích \(a_1.a_2.a_{100}< 0\)

\(a_1.a_2>0.\)

\(\Rightarrow a_{100}< 0.\)

\(\Rightarrow a_1,a_2,a_3,...,a_{99},a_{100}< 0.\)

Vậy tất cả 100 số đó đều là số âm (đpcm).

Chúc bạn học tốt!

Câu 2:

Câu hỏi của Nguyễn Như Quỳnh - Toán lớp 7 | Học trực tuyến

30 tháng 9 2016

N =\(\frac{2010+2011+2012}{2011+2012+2013}\)

\(\Rightarrow N=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Do: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013};\frac{2011}{2012}>\frac{2011}{2011+2012+2013};\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\Leftrightarrow N>M\)

Có \(\frac{a}{b}=\frac{c}{d}\) . Có \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\) ( Tính chất dãy tỉ số bằng nhau ) . Nên :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\left(\frac{a+b}{c+d}\right)^{2012}\left(1\right)\)

Mà  \(\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\frac{a^{2012}}{b^{2012}}=\frac{c^{2012}}{d^{2012}}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(2\right)\).( T/c dãy tỉ số bằng nhau )

Từ \(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a+b}{c+d}\right)^{2012}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(đpcm\right)\)