\(\frac{1}{x^2+3x}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{29}{27}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

\(\frac{1}{x^2+3}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{1}{2}\left(27-\frac{1}{x+9}\right)\)

\(\Leftrightarrow\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}=27-\frac{1}{x+9}\)

Mà 

\(\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}\)

\(=\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)

\(=\frac{1}{x}-\frac{1}{x+9}\)

\(\Rightarrow\frac{1}{x}=27\Rightarrow x=\frac{1}{27}\)

21 tháng 7 2019
https://i.imgur.com/jTzVBzQ.jpg
21 tháng 7 2019
https://i.imgur.com/1Xvpjty.jpg
8 tháng 3 2020

\(ĐKXĐ:x\ne0;x\ne-3;x\ne-6;x\ne-9\)

\(\frac{1}{x^2+3x}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{3}\left(\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}\right)=\frac{3}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}=\frac{9}{10}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+9}=\frac{9}{10}\)

\(\Leftrightarrow\frac{9}{x\left(x+9\right)}=\frac{9}{10}\)

\(\Leftrightarrow x^2+9x-10=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-10\end{cases}\left(tm\right)}\)

O.O chắc ko 

\(\frac{1}{x^2+3x}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{3}{10}\)\(ĐKXĐ:x\ne-3;-6\)

\(\frac{1}{x\left(x+3\right)}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{3}{10}\)

\(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{x^2+15x+54}=\frac{3}{10}\)

\(10\left(x+6\right)\left(x+9\right)+10x\left(x+9\right)+10x\left(x+3\right)=3x\left(x+3\right)\left(x+6\right)\left(x+9\right)\)

\(30x^2+270x+540=3x^4+54x^3+297x^2+486x\)

\(30x^2+270x+540-3x^4-54x^3-297x^2-486x=0\)

\(-3\left(89x^2+72x-180+x^4+18x^3\right)=0\)

\(-3\left(x^2+16x+60\right)\left(x-1\right)=0\)

\(-3\left(x+6\right)\left(x+10\right)\left(x+3\right)\left(x-1\right)=0\)

\(\left(x+6\right)\left(x+10\right)\left(x+3\right)\left(x-1\right)=0\)

\(x=-10,1\)

10 tháng 12 2016

\(\left[\frac{x.\left(x+3\right)}{\left(x+3\right).\left(x^2+9\right)}+\frac{3}{x+9}\right]:\left[\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\) ]

 \(=\frac{x+3}{x^2-9}.\frac{\left(x-3\right).\left(x^2+9\right)}{x^2+9-6x}\)

\(\frac{\left(x-3\right).\left(x+3\right)}{\left(x-3\right)^2}\)

\(\frac{x+3}{x-3}\)

k mik nhé. Plssss~

18 tháng 4 2017

\(1.\frac{7x-3}{x-1}=\frac{2}{3}\)   ( \(x\ne1\))

\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)

\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\frac{7}{19}\)

\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)

\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)

\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)

\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)

\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)

\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)

\(\Leftrightarrow3x=-15\)

\(\Leftrightarrow x=-5\)

\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)

\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)

\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)

\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)

\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)

\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)

\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)

\(\Leftrightarrow4x^2+5x-7=0\)

\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)

\(\left(2x+\frac{5}{4}\right)^2>0\)

\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)

=> PT vô nghiệm 

\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)

\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)

\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)

\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)

\(\Leftrightarrow-23x-7=0\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=\frac{-7}{23}\)

\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)

\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)

\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)

\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)

\(\Leftrightarrow-6x+16=0\)

\(\Leftrightarrow-6x=-16\)

\(\Leftrightarrow x=\frac{16}{6}\)

\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)

\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)

\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)

\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)

\(\Leftrightarrow x^4+x^3-4x-8=0\)

\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)

Đến đấy mk tắc r xl bạn nhé 

26 tháng 6 2016

  \(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}\right)\)\(\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

=\(\left[\frac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)

=\(\left[\frac{x\left(x-3\right)}{\left(x^2+9\right)\left(x-3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{\left(x^2+9\right)\left(x-3\right)}\right]\)

=\(\frac{x}{x^2+9}\):\(\left[\frac{x^2+9}{\left(x-3\right)\left(x^2+9\right)}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)

=\(\frac{x}{x^2+9}\):\(\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

=\(\frac{x}{x^2+9}\):\(\frac{x-3}{x^2+9}\)

=\(\frac{x}{x^2+9}\).\(\frac{x^2+9}{x-3}\)

=\(\frac{x}{x-3}\)