\(\frac{1}{x^2+1}+\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+4}=0\)Giải p...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

Do \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\frac{1}{x^2+1}>0.\)

Tương tự \(\frac{1}{x^2+2};\frac{1}{x^2+3};\frac{1}{x^2}+4>0\)

=> Phương trình vô nghiệm

NV
29 tháng 6 2019

ĐKXĐ: ...

Đặt \(x-\frac{1}{x}=a\Rightarrow a^3=x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)\Rightarrow x^3-\frac{1}{x^3}=a^3+3a\)

Phương trình trở thành:

\(a^3+3a-2a-2=0\Leftrightarrow a^3+a-2=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a+2\right)=0\)

\(\Rightarrow a=1\Rightarrow x-\frac{1}{x}=1\Rightarrow x^2-x-1=0\)

4 tháng 3 2020

a, \(5\left(m+3x\right)\left(x+1\right)-4\left(1+2x\right)=80\)

Phương trình nhận \(x=2\)làm nghiệm nên :

\(5\left(m+3.2\right)\left(2+1\right)-4\left(1+2.2\right)=80\)

\(\Leftrightarrow15m+90-20=80\)

\(\Leftrightarrow15m=80+20-90\)

\(\Leftrightarrow15m=10\Leftrightarrow m=1,5\)

....

b, \(3\left(2x+m\right)\left(3x+2\right)-2\left(3x+1\right)^2=43\)

Phương trình nhận \(x=1\)làm nghiệm nên :

\(3\left(2.1+m\right)\left(3.1+2\right)-2\left(3.1+1\right)^2=43\)

\(\Leftrightarrow30+15m-32=43\)

\(\Leftrightarrow15m=43+32-30\)

\(\Leftrightarrow15m=45\Leftrightarrow m=3\)

....

\(\frac{315-x}{101}+\frac{313-x}{103}+\frac{311-x}{105}+\frac{309-x}{107}+4=0\)

\(\Leftrightarrow\frac{315-x}{101}+1+\frac{313-x}{103}+1+\frac{311-x}{105}+1+\frac{309-x}{107}+1=0\)

\(\Leftrightarrow\frac{416-x}{101}+\frac{416-x}{103}+\frac{416-x}{105}+\frac{416-x}{107}=0\)

\(\Leftrightarrow\left(416-x\right)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)

\(\Leftrightarrow416-x=0\)

\(\Leftrightarrow x=416\)

4 tháng 3 2020

a) 5(m + 3x)(x + 1) - 4(1 + 2x) = 80

Phương trình có nghiệm x = 2:

5(m + 3.2)(2 + 1) - 4(1 + 2.2) = 80

<=> 5(m + 6).3 - 4.5 = 80

<=> 15(m + 6) - 4.5 = 80

<=> 15(m + 6) - 20 = 80

<=> 15(m + 6) = 80 + 20

<=> 15(m + 6) = 100

<=> m + 6 = 100 : 15

<=> m + 6 = 20/3

<=> m = 20/3 - 6

<=> m = 2/3

b) 3(2x + m)(3x + 2) - 2(3x + 1)2 = 43

Phương trình có nghiệm x = 1:

3(2.1 + m)(3.1 + 2) - 2(3.1 + 1)2 = 43

<=> 3(2 + m).5 - 2.16 = 43

<=> 15(2 + m) - 32 = 43

<=> 15(2 + m) = 43 + 32

<=> 15(2 + m) = 75

<=> 2 + m = 75 : 15

<=> 2 + m = 5

<=> m = 5 - 2

<=> m = 3

8 tháng 3 2020

\(\frac{x+1}{x-2}=\frac{1}{x^2-4}\left(x\ne\pm2\right)\)

\(\Leftrightarrow\frac{x+1}{x-2}-\frac{1}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow\frac{x^2+3x+3}{\left(x-2\right)\left(x+1\right)}-\frac{1}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Rightarrow x^2+3x+3-1=0\)

\(\Leftrightarrow x^2+3x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)

<=> x+1=0 hoặc x+2=0

<=> x=-1 hoặc x=-2

\(b,\frac{3}{x+1}=\frac{5}{2x+2}\)

\(\frac{3}{x+1}=\frac{5}{2\left(x+1\right)}\)

\(3=\frac{5}{2}\left(vl\right)\)vô nghiệm 

Câu 6. Giải các phương trình sau: a, x+\(\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\); b, \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}-6\) Câu 7. Giải các phương trình sau: a, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\); b, \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4+++==}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\) c,...
Đọc tiếp

Câu 6. Giải các phương trình sau:

a, x+\(\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\); b, \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}-6\)

Câu 7. Giải các phương trình sau:

a, \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\); b, \(\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4+++==}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)

c, \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\); d, \(\frac{201-6}{99}+\frac{203-6}{97}=\frac{205-x}{95}+3=0\)

e, \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\); f, \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)

g, \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\); h, \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

i, \(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\);

1
29 tháng 3 2020

Câu 6 :

a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)

=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)

=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)

=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)

=> \(15x+10x+x-1=15-9x+1-2x\)

=> \(15x+10x+x-1-15+9x-1+2x=0\)

=> \(37x-17=0\)

=> \(x=\frac{17}{37}\)

Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)

Bài 7 :

a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)

=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)

=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)

=> \(x-23=0\)

=> \(x=23\)

Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)

c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)

=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

=> \(x+2005=0\)

=> \(x=-2005\)

Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)

e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)

=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)

=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)

=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)

=> \(x-100=0\)

Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)

NV
29 tháng 6 2019

ĐKXĐ: ...

\(\Leftrightarrow x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)-1=0\)

Đặt \(x-\frac{1}{x}=a\Rightarrow a^3=x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)\)

\(\Rightarrow x^3-\frac{1}{x^3}=a^3+3\left(x-\frac{1}{x}\right)=a^3+3a\)

Phương trình trở thành:

\(a^3+3a-3a-1=0\Rightarrow a^3=1\Rightarrow a=1\)

\(\Rightarrow x-\frac{1}{x}=1\Rightarrow x^2-x-1=0\)

NV
30 tháng 6 2019

\(\frac{2}{x^2+1}+\frac{4}{x^2+3}+\frac{6}{x^2+5}=3+\frac{x^2-1}{x^2+6}\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+1-\frac{2}{x^2+1}+1-\frac{4}{x^2+3}+1-\frac{6}{x^2+5}=0\)

\(\Leftrightarrow\frac{x^2-1}{x^2+6}+\frac{x^2-1}{x^2+1}+\frac{x^2-1}{x^2+3}+\frac{x^2-1}{x^2+5}=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(\frac{1}{x^2+6}+\frac{1}{x^2+1}+\frac{1}{x^2+3}+\frac{1}{x^2+5}\right)=0\)

\(\Rightarrow x=\pm1\)

a, \(\left(x^2-2x+1\right)-4=0\)

\(x^2-2x+1-4=0\)

\(x^2-2x-3=0\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4.1.3=4-12=-8< 0\)

Nên pt vô nghiệm 

b, \(\left| 5x-5\right|=0\)

\(\Leftrightarrow5x-5=0\Leftrightarrow5x=5\Leftrightarrow x=1\)

c, ĐKXĐ : \(\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x^2-4\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\x\ne2\\x\ne\pm2\end{cases}\Rightarrow}x\ne\pm2}\)

\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

\(\frac{\left(x-2\right)^2\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)\left(x^2-4\right)}+\frac{3\left(x+2\right)\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)\left(x^2-4\right)}=\frac{\left(x^2-11\right)\left(x+2\right)\left(x-2\right)}{\left(x^2-4\right)\left(x+2\right)\left(x-2\right)}\)

\(\left(x-2\right)^2\left(x^2-4\right)+3\left(x+2\right)\left(x^2-4\right)=\left(x^2-11\right)\left(x+2\right)\left(x-2\right)\)

\(\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)

\(x^2-x+10=x^2-11\)

\(x^2-x+10-x^2+11=0\)

\(-x+21=0\Leftrightarrow x-21=0\Leftrightarrow x=21\)Theo ĐKXĐ : => tm 

6 tháng 5 2020

a, \(\left(x^2-2x+1\right)-4=0\) \(\Leftrightarrow\left(x-1\right)^2=4=\left(\pm2\right)^2\)

                                                           \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy phương trình có 2 nghiệm x=(3; -1)

b, \(\left|5x-5\right|=0\Leftrightarrow5x-5=0\)

                                 \(\Leftrightarrow5x=5\Rightarrow x=1\)

Vậy phương trình có nghiệm x=1

c, \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)\(\left(x\ge0;x\ne2\right)\) \(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right).\left(x+2\right)}+\frac{3.\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right).\left(x+2\right)}\)

                                                                  \(\Leftrightarrow\left(x-2\right)^2+3.\left(x+2\right)=x^2-11\)

                                                                 \(\Leftrightarrow x^2-4x+4+3x+6=x^2-11\)

                                                                 \(\Leftrightarrow x=21\left(TM\right)\)

Vậy phương trình có nghiệm x=21