Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
Đề phải vậy chứ nhỉ?
\(\frac{1}{x-1}+\frac{3x^2}{1-x^3}=\frac{2x}{x^2+x+1}\left(Đkxđ:x\ne1\right)\)
\(\Leftrightarrow x^2+x+1-3x^2=2x\left(x-1\right)\)
\(\Leftrightarrow x^2+x+1-3x^2=2x^2-2x\)
\(\Leftrightarrow4x^2-3x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktmđk\right)\\x=-\frac{1}{4}\left(tmđk\right)\end{matrix}\right.\)
Vậy ...........
Đề chỗ mấu thức của phân thức cuối ý cho mình hỏi là \(x^2\) hay \(x^3\)
Điều kiện : \(x\ne\pm1\)
\(\frac{x+4}{x+1}+\frac{x}{x-1}=\frac{2x^2}{x^2-1}\)
\(\Rightarrow\frac{\left(x+4\right)\left(x-1\right)+x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{2x^2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow\left(x+4\right)\left(x-1\right)+x\left(x+1\right)=2x^2\)
\(\Rightarrow x^2-x+4x-4+x^2+x=2x^2\)
\(\Rightarrow2x^2+4x+4=2x^2\)
\(\Rightarrow\left(x^2+4x+4\right)=2x^2-x^2\)
\(\Rightarrow\left(x+2\right)^2=x^2\)
\(\Rightarrow\left|x+2\right|=\left|x\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+2=x\\x+2=-x\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x\in\varnothing\\x=1\end{array}\right.\) (loại )
Vậy phương trình vô nghiệm
Bài 1:
a, \(\frac{1}{x+1}+\frac{2}{x-1}=\frac{1+x^2}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)
\(\Leftrightarrow\) \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{1+x^2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow\) x - 1 + 2(x + 1) = 1 + x2
\(\Leftrightarrow\) x - 1 + 2x + 2 - 1 - x2 = 0
\(\Leftrightarrow\) -x2 + 3x = 0
\(\Leftrightarrow\) x(3 - x) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐKXĐ\right)\\x=3\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy S = {0; 3}
b, \(\frac{x-2}{x+2}-\frac{x}{x-2}=\frac{8}{x^2-4}\) (ĐKXĐ: x \(\ne\) \(\pm\) 2)
\(\Leftrightarrow\) \(\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{8}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\) (x - 2)2 - x(x + 2) = 8
\(\Leftrightarrow\) (x - 2)2 - x(x + 2) - 8 = 0
\(\Leftrightarrow\) x2 - 4x + 4 - x2 - 2x - 8 = 0
\(\Leftrightarrow\) -6x - 4 = 0
\(\Leftrightarrow\) x = \(\frac{-2}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{-2}{3}\)}
c, \(\frac{1}{x}\) + \(\frac{2}{x-3}\) = \(\frac{1-5x}{x^2-3x}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 3)
\(\Leftrightarrow\) \(\frac{x-3}{x\left(x-3\right)}+\frac{2x}{x\left(x-3\right)}=\frac{1-5x}{x\left(x-3\right)}\)
\(\Rightarrow\) x - 3 + 2x = 1 - 5x
\(\Leftrightarrow\) 3x - 3 = 1 - 5x
\(\Leftrightarrow\) 3x + 5x = 1 + 3
\(\Leftrightarrow\) 8x = 4
\(\Leftrightarrow\) x = \(\frac{1}{2}\) (TMĐKXĐ)
Vậy S = {\(\frac{1}{2}\)}
Bài 2:
a, \(\frac{1}{x+2}=\frac{5}{2-x}+\frac{12+x}{x^2-4}\)
\(\Leftrightarrow\) \(\frac{1}{x+2}=\frac{-5}{x-2}+\frac{12+x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\) \(\frac{x-2}{\left(x+2\right)\left(x-2\right)}=\frac{-5\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12+x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\) x - 2 = -5(x + 2) + 12 + x
\(\Leftrightarrow\) x - 2 = -5x - 10 + 12 + x
\(\Leftrightarrow\) x - 2 = -4x + 2
\(\Leftrightarrow\) x + 4x = 2 + 2
\(\Leftrightarrow\) 5x = 4
\(\Leftrightarrow\) x = \(\frac{4}{5}\)
Vậy S = {\(\frac{4}{5}\)}
Chúc bn học tốt!! (Phần b hình như không có gì thì phải)
a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
ĐKXĐ: x≠1/4, x≠-1/4
⇔\(-\frac{3}{4x-1}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
⇔\(\frac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\frac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\frac{3+6x}{16x^2-1}\)
⇒-12x-3=8x-2-3-6x
⇔8x-6x+12x=-3+2+3
⇔14x=2
⇔x=1/7(tmđk)
Vậy phương trình có nghiệm là x=1/7
b, \(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\) (2)
ĐKXĐ: x≠0, x≠2
(2)⇔\(\frac{2\left(5-x\right)}{2.4x\left(x-2\right)}+\frac{7\left(x-2\right)}{8x\left(x-2\right)}=\frac{4.\left(x-1\right)}{4.2x\left(x-2\right)}+\frac{x}{8.x\left(x-2\right)}\)
⇒10-2x+7x-14=4x-4+x
⇔-2x+7x-4x-x=-4-10+14
⇔0x=0
⇔ x∈R
Vậy phương trình có nghiệm là x∈R và x≠0, x≠2
c, \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\) (3)
ĐKXĐ: x≠0
(3)⇒x(x+1)(x2-x+1)-x(x-1)(x2+x+1)=3
⇔x4+x-x4+x=3
⇔2x=3
⇔x=3/2(tmđk)
Vậy phương trình có nghiệm là x=3/2