Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\) luôn xđ với mọi x
các câu còn lại tương tự
a) \(\sqrt{\left|x-1\right|-3}\) xác định khi
\(\left|x-1\right|-3\ge0\)
\(\left|x-1\right|\ge3\)
\(\Rightarrow\orbr{\begin{cases}x-1\ge3\\x-1\ge-3\end{cases}}\Rightarrow\orbr{\begin{cases}x\ge4\\x\ge-2\end{cases}}\)
vậy \(\orbr{\begin{cases}x\ge4\\x\ge-2\end{cases}}\) thì \(\sqrt{\left|x-1\right|-3}\) xác định
Để \(\frac{x}{x-2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x-2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}x-2>0\Leftrightarrow x>2\)
Để \(\frac{x}{x+2}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x+2\ne0\\x-2\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-2\\x\ge2\end{cases}\Leftrightarrow}x\ge2\)
Để \(\frac{x}{x^2-4}+\sqrt{x-2}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}x-2\ge0\\x^2-4\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge2\\x\ne\pm2\end{cases}\Leftrightarrow x>2}\)
Để \(\sqrt{\frac{1}{3-2x}}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}3-2x\ne0\\3-2x\ge0\end{cases}\Leftrightarrow}3-2x>0\Leftrightarrow2x< 3\Leftrightarrow x< \frac{3}{2}\)
Để \(\sqrt{\frac{4}{2x+3}}\) có nghĩa thì điều kiện là:
\(2x+3>0\Leftrightarrow2x>-3\Leftrightarrow x>-\frac{3}{2}\)
Để \(\sqrt{-\frac{2}{x+1}}\) có nghĩa thì điều kiện là:
\(\hept{\begin{cases}-\frac{2}{x+1}\ge0\\x+1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+1\le0\\x\ne-1\end{cases}\Leftrightarrow}x< -1\)
1) \(x\ge\frac{1}{6}\)
2.\(x\le0\)
3.\(4-5x\ge0\Leftrightarrow x\le\frac{4}{5}\)
4.mọi x