Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1)
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1)
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1)
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1)
Vậy A = n/(2n + 1)
hình như sai!!
$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$
Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$
Vậy $(*)$ đúng với $n=1$
Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là:
$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$
Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là:
$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$
$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$
$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$
$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$
$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$
Do đó với $n=k+1$ thì $(*)$ đúng
$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$
Ta có:
\(1.3.5.7.9...\left(2n-1\right)=\frac{\left[1.3.5.7.9....\left(2n-1\right)\right].\left[2.4.6.8...2n\right]}{2.4.6.8....2n}=\frac{1.2.3.4.5.6....2n}{\left(2.1\right).\left(2.2\right).\left(2.3\right)\left(2.4\right)....\left(2.n\right)}\)
=> \(1.3.5.7.9...\left(2n-1\right)=\frac{1.2.3.4.5.6....2n}{\left(2.2.2.....2\right).\left(1.2.3.4.....n\right)}=\frac{\left(1.2.3.4.....n\right)\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}{2^n.\left(1.2.3.4....n\right)}\)
=> \(1.3.5.7.9...\left(2n-1\right)=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n}\)
=> \(\frac{1.3.5.7.9...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n}{2^n\left[\left(n+1\right)\left(n+2\right)\left(n+3\right).....2n\right]}=\frac{1}{2^n}\)(đpcm)
\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)
\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)
\(A=7.\frac{13}{28}\)
\(A=\frac{13}{4}\)
k cho mk mk giải cho
???????????????????????????????????/////