Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MTC: \(abc\left(a-b\right)\left(b-c\right)\left(a-c\right)\)nên
\(A=\frac{bc\left(b-c\right)\left(a-2\right)\left(a-1014\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{ac\left(a-c\right)\left(b-2\right)\left(b-1004\right)}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)\left(c-2\right)\left(c-1004\right)}{abc\left(a-c\right)\left(a-b\right)\left(b-c\right)}\)
\(=\frac{2008b^2c+2008a^2c+2008a^2b-2008bc^2-2008a^2c-2008ab^2}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{2008\left[\left(c^2a-c^2b\right)+\left(a^2b-a^2c\right)+\left(b^2a-b^2c\right)\right]}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{2008\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{2008}{abc}\) ( với \(abc\ne0\))
Ta có:\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(b-a\right)+\left(a-c\right)}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)
Chứng minh tương tự,ta được:
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)
\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)\left(đpcm\right)\)
\(VT=\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{\left(b-a\right)-\left(c-a\right)}{\left(b-a\right)\left(c-a\right)}+\frac{\left(c-b\right)-\left(a-b\right)}{\left(c-b\right)\left(a-b\right)}+\frac{\left(a-c\right)-\left(b-c\right)}{\left(a-c\right)\left(b-c\right)}\)
\(=\frac{1}{c-a}-\frac{1}{b-a}+\frac{1}{a-b}-\frac{1}{c-b}+\frac{1}{b-c}-\frac{1}{a-c}\)
\(=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=2\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)=VP\left(đpcm\right)\)
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn