\(\frac{1988.1986+1997+1995}{1997.1996-1995.1996}\)

Giai dum nhanh cho minh nha

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2016

Vì mình ko giải rõ được nên mình chỉ dài được vậy thôi nếu đấu .​ của câu là ,

\(\frac{1988,1986+1997+1995}{1997,1996-1995,1996}\)

 

12 tháng 1 2016

nối vào nhé \(=\frac{5980,1986}{2}=2990,0993\)Tick nhe avt367938_60by60.jpgBUI NGOC BICH

17 tháng 7 2015

\(A=11x\left(\frac{5}{11x16}+\frac{5}{16x21}+\frac{5}{21x26}+\frac{5}{26x31}+\frac{5}{31x36}+\frac{5}{36x41}\right)\)

\(A=11x\left(\frac{16-11}{11x16}+\frac{21-16}{16x21}+\frac{26-21}{21x26}+...+\frac{41-36}{36x41}\right)\)

\(A=11x\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{36}-\frac{1}{41}\right)\)

\(A=11x\left(\frac{1}{11}-\frac{1}{41}\right)=11x\frac{30}{11x41}=\frac{30}{41}\)

17 tháng 7 2015

A=\(\frac{55}{11.16}+\frac{55}{16.21}+...+\frac{55}{36.41}\)

A=\(11\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{36}-\frac{1}{41}\right)\)

A=\(11\left(\frac{1}{11}-\frac{1}{41}\right)\)

A=\(11.\frac{30}{451}\)

A=\(\frac{30}{41}\)

26 tháng 7 2019

\(D=\frac{1998.1996+1996.11+11+1985}{1996\left(1997-1995\right)}=\frac{1996\left(1998+11+1\right)}{1996.2}=1005\)

26 tháng 7 2019

\(\frac{1988.1996+1997.11+1985}{1997.1996-1996.1996}\)

\(=\frac{1988.1996+1996.11+\left(11+1985\right)}{1996.\left(1997-1995\right)}\)

\(=\frac{1988.1996+1996.11+1996}{1996.\left(1997-1995\right)}\)

\(=\frac{1996.\left(1998+11+1\right)}{1996.\left(1997-1995\right)}\)

\(=\frac{1996.2010}{1996.2}\)

\(=\frac{2010}{2}=1005\)

Rất vui vì giúp đc bn !!!

26 tháng 7 2019

Bài 1:  Hơi thắc mắc một chút, ukm tìm x để phân số nguyên à bn:

\(a.\)\(\frac{6+x}{33}\)có giá trị nguyên

\(\Leftrightarrow6+x⋮33\)

\(\Leftrightarrow6+x\in B\left(33\right)=\left\{0;\pm33;\pm66;...\right\}\)

\(\Leftrightarrow x\in\left\{-6;27;-39;60;-72;...\right\}\)

Bài này sao sao ấy, nếu vậy thì sẽ có rất nhiều x thỏa mãn ( vô vàn luôn, ko giới hạn )

\(b.\)\(\frac{12+x}{43-x}\)có giá trị nguyên

\(\Leftrightarrow12+x⋮43-x\)

Ta thấy: \(43-x⋮43-x\forall x\in Z\)

\(\Rightarrow\left(12+x\right)+\left(43-x\right)⋮43-x\forall x\in Z\)

\(\Leftrightarrow12+x+43-x⋮43-x\forall x\in Z\)

\(\Leftrightarrow\left(12+43\right)+\left(x-x\right)⋮43-x\forall x\in Z\)

\(\Leftrightarrow55⋮43-x\forall x\in Z\)

\(\Leftrightarrow43-x\inƯ\left(55\right)=\left\{\pm1;\pm5;\pm11;\pm55\right\}\)

Sau đó bn lập bẳng kết quả và xét là đc nha, mk ko bt lập bảng kết quả trong OLM nên ko giúp bn đc, thứ lỗi nha.

Bài 2:

Câu hỏi của Sarimi chan - Toán lớp 5 - Học toán với OnlineMath

Câu hỏi của Phạm Huyền My - Toán lớp 5 - Học toán với OnlineMath

Vào link này nhé, bài của mk ở đây

Rất vui vì giúp đc bn !!!

2 tháng 9 2015

\(\frac{1998\times1996+1997+1995}{1996\times\left(1997-1995\right)}=\frac{1998\times1996+1996+1996}{1996\times2}=\frac{1996\times1999+1996}{1996\times2}\)

=\(\frac{1996\times2000}{1996.2}=\frac{2000}{2}=1000\)

9 tháng 2 2018

\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)

\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)

\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)

\(B=\frac{3}{4}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)

\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)

\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)

=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)

\(A=\frac{2}{3}-\frac{1}{192}\)

\(A=\frac{127}{192}\)

\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)

Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)

      \(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)

      \(C=\frac{1990.997}{1994.995}\)

      \(C=\frac{995.2+997}{997.2+995}=1\)

9 tháng 2 2018

\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)

\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)