Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy đồng 2 phân số , ta có :
\(\frac{a}{b}=\frac{a.m}{b.m}=\frac{18}{31}=\frac{18.37}{31.37}=\frac{666}{1147}\)
\(\frac{a}{b}=\frac{a.m}{b.m}=\frac{15}{37}=\frac{15.21}{37.31}=\frac{315}{1147}\)
Vậy ta có 2 phân số đc quy đồng là : \(\frac{18}{31}=\frac{666}{1147}\) và \(\frac{15}{37}=\frac{315}{1147}\)
Ta thấy 2 phân số đều có mẫu số chung nên : \(666>315\)
Vậy \(\frac{18}{31}>\frac{15}{37}\)
S=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+...+\(\frac{1}{18^2}\)+\(\frac{1}{19^2}\)
S<\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{17.18}\)+\(\frac{1}{18.19}\)
S<1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+...+\(\frac{1}{17}\)-\(\frac{1}{18}\)+\(\frac{1}{18}\)-\(\frac{1}{19}\)
S<1-\(\frac{1}{19}\)
\(\Rightarrow\)S<\(\frac{18}{18}\)
A)
\(\frac{1}{30}\)-\(\frac{1}{31}\)+\(\frac{1}{31}\)-\(\frac{1}{32}\)+\(\frac{1}{32}\)-\(\frac{1}{33}\)+...+\(\frac{1}{42}\)-\(\frac{1}{43}\)
=\(\frac{1}{30}\)-\(\frac{1}{43}\)
=\(\frac{13}{1290}\)
B)
=\(\frac{2}{2}\)X(\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+\(\frac{1}{7.9}\)+\(\frac{1}{9.11}\))
=\(\frac{1}{2}\)X(\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+\(\frac{2}{9.11}\))
=\(\frac{1}{2}\)X(\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)-\(\frac{1}{11}\))
=\(\frac{1}{2}\)X(\(\frac{1}{3}\)-\(\frac{1}{11}\))
=\(\frac{1}{2}\)X\(\frac{8}{33}\)
=\(\frac{8}{66}\)=\(\frac{4}{33}\)
Ta có :
\(\frac{1}{13}< \frac{1}{12}\)
\(\frac{1}{14}< \frac{1}{12}\)
\(\frac{1}{15}< \frac{1}{12}\)
\(\Rightarrow\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{12}+\frac{1}{12}+\frac{1}{12}=3\cdot\frac{1}{12}=\frac{1}{4}\) (1)
Ta cũng có :
\(\frac{1}{61}< \frac{1}{60}\)
\(\frac{1}{62}< \frac{1}{60}\)
\(\frac{1}{63}< \frac{1}{60}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{60}+\frac{1}{60}+\frac{1}{60}=3\cdot\frac{1}{60}=\frac{1}{20}\) (2)
Từ (1) ; (2) \(\Rightarrow S=\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)
=> S < \(\frac{1}{2}\) (đpcm)
S=\(\frac{1}{3}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\right)\)
S=\(\frac{1}{3}.2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
S=\(\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
S=\(\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
18/31 x 62/21 = 18x62/31x21 = 3x6x31x2/31x3x7=6x2/7=12/7
\(\frac{18}{31}.\frac{62}{21}=\frac{18.62}{31.21}=\frac{3.6.31.2}{31.3.7}=\frac{6.2}{7}=\frac{12}{7}\)