Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta thấy: 70 chia hết cho 5 và 7
35n+3 không chia hết cho 5 và 7
nên phân số 35n+3/70 khi rút gọn đến tối giản thì mẫu chứa thừa số nguyên tố 5 và 7
Vậy 35+3/70 viết được dưới dạng số thập phân vô hạn tuần hoàn tạp
a: \(C=\dfrac{m\left(m^2+3m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=\dfrac{m\left(m+1\right)\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+5}=1\)
Do đó: C là phân số tối giản
b: Phân số C=1/1 được viết dưới dạng là số thập phân hữu hạn
Ta thấy: n(n + 1)(n + 2) là tích 3 số tự nhiên liên tiếp nên n(n + 1)(n + 2) chia hết cho 3
Mà 52 không chia hết cho 3
Như vậy, đến khi tối giản, mẫu số của phân số \(\frac{52}{n\left(n+1\right)\left(n+2\right)}\) có ước là 3, khác 2 và 5
Do đó, \(\frac{52}{n\left(n+1\right)\left(n+2\right)}\) có thể viết được dưới dạng số thập phân vô hạn tuần hoàn
Ta có: \(n\left(n+1\right)\left(n+2\right)\) chia hết cho 3.
=> \(\frac{52}{n\left(n+1\right)\left(n+2\right)}\) là stp hữu hạn.
a) \(A=\frac{m^3+3m^2+2m+5}{m^3+3m^2+2m+6}\) m thuộc N
Với m thuộc N thì: m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6 là 2 số tự nhiên liên tiếp nên chúng nguyên tố cùng nhau, hay
U (m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6) = 1
hay A là phân số tối giản.
b) \(A=\frac{m^3+3m^2+2m+5}{m^3+3m^2+2m+6}=1-\frac{1}{m^3+3m^2+2m+6}=1-\frac{1}{m\left(m+1\right)\left(m+2\right)+6}\)
m(m+1)(m+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 6.
=> m(m+1)(m+2) + 6 chia hết cho 6.
mà 1 chia 6 là số TP vô hạn tuần hoàn.
=> A là số TP vô hạn tuần hoàn.
<br class="Apple-interchange-newline"><div id="inner-editor"></div>A=m3+3m2+2m+5m3+3m2+2m+6 m thuộc N
Với m thuộc N thì: m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6 là 2 số tự nhiên liên tiếp nên chúng nguyên tố cùng nhau, hay
U (m3 + 3m2 + 2m + 5; m3 + 3m2 + 2m + 6) = 1
hay A là phân số tối giản.