Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
<=> \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x=-1\)
<=> \(\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)x=-1\)
<=> \(0.x=-1\)
=> x thuộc rỗng
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Leftrightarrow\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)x+1=0\)
\(\Leftrightarrow\left(\frac{5}{30}+\frac{3}{30}-\frac{8}{30}\right)x+1=0\)
\(\Leftrightarrow\frac{5+3-8}{30}x+1=0\)
\(\Leftrightarrow0x=-1\)(vô lí)
vậy không có giá trị nào của x thỏa mãn.
câu đầu nè e
x(1/6-4/15)+11/10 = 0
-x10. =-11/10
x=11
xy hình như là y/4 chứ nhỉ
\(\frac{5}{x}+\frac{4}{y}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{4}{y}\)
\(\Rightarrow\frac{5}{x}=\frac{y-32}{8y}\)
\(\text{ }\Rightarrow\orbr{\begin{cases}y-32=5\\x=8y\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=37\\x=8.y\end{cases}}\Rightarrow\orbr{\begin{cases}y=37\\x=8.37\end{cases}}\Rightarrow\orbr{\begin{cases}y=37\\x=296\end{cases}}\)
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1+0.\)
\(=\left(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x\right)+1\)
\(=x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1\)
\(=x\left(\frac{1\cdot5}{30}+\frac{1\cdot3}{30}-\frac{4\cdot2}{30}\right)+1\)
\(=x\left(\frac{5}{30}+\frac{3}{30}-\frac{8}{30}\right)+1\)
\(=x\left(\frac{5+3-8}{30}\right)+1\)
\(=x\cdot0+1=1\)
\(\Rightarrow\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1+0=1\)
trả lời:
\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1+0.61x+101x−154x+1+0.
=\left(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x\right)+1=(61x+101x−154x)+1
=x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1=x(61+101−154)+1
=x\left(\frac{1\cdot5}{30}+\frac{1\cdot3}{30}-\frac{4\cdot2}{30}\right)+1=x(301⋅5+301⋅3−304⋅2)+1
=x\left(\frac{5}{30}+\frac{3}{30}-\frac{8}{30}\right)+1=x(305+303−308)+1
=x\left(\frac{5+3-8}{30}\right)+1=x(305+3−8)+1
=x\cdot0+1=1=x⋅0+1=1
\Rightarrow\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1+0=1⇒61x+101x−154x+1+0=1
ko chắc chúc bạn học tốt.
\(a,\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{x-2}{7}=0\Rightarrow x-2=0\Leftrightarrow x=2\)
TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow\frac{-x+3}{5}=0\Rightarrow-x+3=0\Leftrightarrow x=3\)
TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{x+4}{3}=0\Rightarrow x+4=0\Leftrightarrow x=-4\)
\(\Rightarrow x\in\left\{2;3;-4\right\}\)
\(b,\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Rightarrow\frac{5}{30}x+\frac{3}{30}x-\frac{8}{30}x+1=0\)
\(\Rightarrow\frac{5x+3x-8x}{30}+1=0\)
\(\Rightarrow1=0\)( vô lý )\(\Rightarrow x\in\varnothing\)
\(a,\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Leftrightarrow\left[\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right]x=-1\)
\(\Leftrightarrow0x=-1\Leftrightarrow x\in\varnothing\)
\(b,\left|x\cdot\left[x^2-\frac{5}{4}\right]\right|=x\)
Vì vế trái \(\left|x\left[x^2-\frac{5}{4}\right]\right|\ge0\)với mọi x nên vế phải \(x\ge0\)
Ta có : \(x\left|x^2-\frac{5}{4}\right|=x\)vì \(x\ge0\)
Nếu x = 0 thì \(0\left|0^2-\frac{5}{4}\right|=0\)đúng
Nếu \(x\ne0\)thì ta có \(\left|x^2-\frac{5}{4}\right|=1\Leftrightarrow x^2-\frac{5}{4}=\pm1\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{2}\end{cases}}\)
a) \(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
=> \(\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)x+1=0\)
=> \(0x+1=0\)
=> \(1=0\)(vô lí)
b) |x . (x2 - 5/4)| = x
TH1: \(x.\left(x^2-\frac{5}{4}\right)=x\)
=> \(x^3-\frac{5}{4}x-x=0\)
=> \(x^3-\frac{9}{4}x=0\)
=> \(x\left(x^2-\frac{9}{4}\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x^2-\frac{9}{4}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x^2=\left(\frac{3}{2}\right)^2\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm\frac{3}{2}\end{cases}}\)
TH2: \(x\left(x^2-\frac{5}{4}\right)=-x\)
=> \(x^3-\frac{5}{4}x+x=0\)
=> \(x^3-\frac{1}{4}x=0\)
=> \(x\left(x^2-\frac{1}{4}\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x^2-\frac{1}{4}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x^2=\left(\frac{1}{2}\right)^2\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm\frac{1}{2}\end{cases}}\)
Do |x.(x2 - 5/4)| \(\ge\)0 => x\(\ge\)0 => x thuộc {0; 1/2; 3/2}
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Rightarrow x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1=0\)
\(\Rightarrow x.0+1=0\)
=> 1=0 ( Vô lý )
Vậy \(x\in\varnothing\)
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Rightarrow x.\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)=1\)
\(\Rightarrow x.0=1\Rightarrow x=0\)
Vậy x=0
Câu a đề thiếu vế phải rồi bạn
b: \(\Leftrightarrow x\cdot0+1=0\)
=>0x+1=0(vô lý)
b, \(x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1=0\)
\(0+1=0\)
=> x thuoc rong
Bài làm
\(\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(x\left(\frac{1}{6}+\frac{1}{10}-\frac{4}{15}\right)+1=0\)
\(x\left(\frac{5}{30}+\frac{3}{30}-\frac{8}{30}\right)+1=40\)
\(x.\frac{1}{30}+1=0\)
\(x\frac{1}{3}=-1\)
\(x=-1:\frac{1}{3}\)
\(x=-1.3\)
\(x=-3\)
# Học tốt #