Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3.7}+\frac{1}{3.7.9}+\frac{1}{7.9.13}+\frac{1}{9.13.15}+\frac{1}{13.15.19}\)
\(=\frac{1}{2}\left(\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+...+\frac{1}{13.15}-\frac{1}{15.19}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.3}-\frac{1}{15.19}\right)=\frac{47}{285}\)
\(C=\frac{2}{1\cdot5}+\frac{2}{5\cdot9}+\frac{2}{9\cdot13}+\frac{2}{13\cdot17}+\frac{2}{17\cdot21}\)
\(C=\frac{2}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{20}{21}\)
\(=\frac{10}{21}\)
\(\frac{1}{1.3.7}=\frac{1}{6}\left(\frac{1}{1.3}-\frac{1}{3.7}\right)\)
\(\frac{1}{3.7.9}=\frac{1}{6}\left(\frac{1}{3.7}-\frac{1}{7.9}\right)\)
....
\(\frac{1}{13.15.19}=\frac{1}{6}\left(\frac{1}{13.15}-\frac{1}{15.19}\right)\)
Cộng các vế với nhau ta được
\(\frac{1}{1.3.7}+\frac{1}{3.7.9}+...+\frac{1}{13.15.19}=\frac{1}{6}\left(\frac{1}{1.3}-\frac{1}{15.19}\right)=\frac{37}{3.15.19}\)
\(\frac{33}{2}+\frac{33}{6}+\frac{33}{18}+\frac{33}{54}+\frac{33}{162}+\frac{33}{486}\)
\(=\frac{33.3+33.3+33.3+33.3+33.3}{486}\)
\(=\frac{99.5}{486}\)
\(=\frac{495}{486}\)
Gọi \(A=\frac{33}{2}+\frac{33}{6}+...+\frac{33}{486}\)
\(A=33.\left[\left(\frac{1}{1.2}+\frac{1}{2.3}\right)+\left(\frac{1}{3.6}+\frac{1}{6.9}\right)\left(\frac{1}{9.18}+\frac{1}{18.27}\right)\right]\)
\(A=33.\left[\frac{2}{3}+\frac{2}{9}+\frac{2}{27}\right]\)
\(A=66.\left[\frac{9}{27}+\frac{3}{27}+\frac{1}{27}\right]\)
\(A=66.\frac{13}{27}\)
\(A=\frac{286}{9}\)
sai hay đúng cx ko biết nha
gạch tất cả số 5, 9, 13
là bằng 4.x/1 + 4.x/17
rồi gợi ý thế thôi nhé
\(\frac{4.x}{1.5}+\frac{4.x}{5.9}+\frac{4.x}{9.13}+\frac{4.x}{13.17}=16\)
\(x.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}\right)=16\)
\(x.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}\right)=16\)
\(x.\left(1-\frac{1}{17}\right)=16\)
\(x.\frac{16}{17}=16\Rightarrow x=16:\frac{16}{17}=16.\frac{17}{16}\)
\(\Rightarrow x=17\)
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)
Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)
Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)
Bài làm :
Ta có :
\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A>\frac{1}{2}-\frac{1}{10}\)
\(A>\frac{2}{5}\left(1\right)\)
Ta cũng có :
\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)
\(A< 1-\frac{1}{9}\)
\(A< \frac{8}{9}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)
=> Điều phải chứng minh
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{11}{11}-\frac{1}{11}\)
\(=\frac{10}{11}\)
Chúc bạn học tốt !!!
lớp 6 thì có
Gọi A=\(\frac{1}{5.9}+\frac{1}{9.13}+....+\frac{1}{41.45}\)
=>4A=\(\frac{4}{5.9}+\frac{4}{9.13}+....+\frac{4}{41.45}\)
4A=\(\frac{9-5}{5.9}+\frac{13-9}{9.13}+....+\frac{45-41}{41.45}\)
4A\(=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{41}-\frac{1}{45}\)
\(4A=\frac{1}{5}-\frac{1}{45}\)
\(4A=\frac{8}{45}\)
\(=>A=\frac{2}{45}\)