Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5\times8}+\frac{1}{8\times11}+...+\frac{1}{x\times\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}\times\left(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{x\times\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{101}{1540}\div\frac{1}{3}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1504}\times3\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(x+3=308\)
\(x=308-3\)
x = 305
Chúc bạn học tốt ^^
\(\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\frac{1}{5}-\frac{1}{3}-\frac{1}{x+3}=\frac{101}{1540}\)
\(\frac{1}{15}-\frac{1}{x+3}=\frac{101}{1540}\)
\(\frac{1}{x+3}=\frac{1}{15}-\frac{101}{1540}\)
\(\frac{1}{x+3}=\frac{1}{924}\)
=> x = 924 -3
=> x = 921
a)\(\frac{1}{5.8}+\frac{1}{8.11}+.....+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-...-\frac{1}{x+3}=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{101}{1540}=\frac{207}{1540}\)
\(\frac{1}{x+3}=\frac{207}{1540}\Leftrightarrow207\left(x+3\right)=1540\)
\(207x+621=1540\)
\(207x=1540-621=919\Rightarrow x=\frac{919}{207}\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(x+3=308\)
\(x=305\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Rightarrow3\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{101}{1540}\)
\(\Rightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=305\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\) (x khác 0; khác -3)
\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
<=>\(\frac{1}{x+3}=\frac{1}{308}\)
=>x+3=308
<=>x=305 (nhận)
Vậy x=305
\(a)\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x(x+3)}=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left[(\frac{1}{5}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3})\right]=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left[\frac{1}{5}-\frac{1}{x+3}\right]=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{5}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
\(b)x-(\frac{50x}{100}-\frac{25x}{200})=\frac{45}{4}\)
\(\Rightarrow x-(\frac{100x}{200}-\frac{25x}{200})=\frac{45}{4}\)
\(\Rightarrow x-\frac{5x}{8}=\frac{45}{4}\)
\(\Rightarrow\frac{3x}{8}=\frac{45}{4}\)
\(\Rightarrow3x=\frac{45}{4}\cdot8\)
\(\Rightarrow3x=90\Rightarrow x=30\)
\(c)1+2+3+4+...+x=820\)
Ta có : \(1+2+3+4+...+x=\frac{(1+x)\cdot x}{2}\)
Do đó : \(\frac{(1+x)\cdot x}{2}=820\)
\(\Rightarrow(1+x)\cdot x=820\cdot2\)
\(\Rightarrow(1+x)\cdot x=1640\)
\(\Rightarrow(1+x)\cdot x=40\cdot41\)
Vì x và x + 1 là hai số tự nhiên liên tiếp nên => x = 40
Chúc bạn học tốt :3
Mình không viết lại đề bài nha
a) \(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\Rightarrow x=305\)
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=> \(\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
=> \(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
=> \(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}=\frac{303}{1540}\)
=> \(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
=> \(x+3=308\)
=> x = 305
Vậy x = 305
a)Ta có \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
=)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
Suy ra \(\frac{1}{5}-\frac{1}{x+3}\)= \(\frac{303}{1540}\)=)\(\frac{1}{x+3}=\frac{1}{305}\)=) \(x+3=305\)=) \(x=302\)
\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(\Rightarrow\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=308-3\)
\(x=305\)
Vậy \(x=305\)
Tham khảo nhé~
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
<=>\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
<=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
<=>\(\frac{1}{x+3}=\frac{1}{308}\)
<=> x+3=308
<=> x=305