Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/3x(1/2x5+1/5x8+......+1/95x98)
A=1/3x(1/2-1/5+1/5-1/8+.........+1/95-1/98)
A=1/3x(1/2-1/98)
A=1/3x24/49
A=8/49
A =\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
A = \(\frac{1.3}{2.5.3}+\frac{1.3}{5.8.3}+\frac{1.3}{8.11.3}+...+\frac{1.3}{92.95.3}+\frac{1.3}{95.98.3}\)
A = \(\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
A =\(\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
A =\(\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)
A =\(\frac{1}{3}.\frac{97}{98}\)
A =\(\frac{97}{294}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+............+\frac{1}{92.95}+\frac{1}{95.98}\)
\(A=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+..........+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-.............-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}\left(\frac{49}{98}-\frac{1}{98}\right)\)
\(A=\frac{1}{3}.\frac{48}{98}\)
\(A=\frac{8}{49}\)
Vậy A = \(\frac{8}{49}\)
Phân tích: 1/2.5 = 1/2 - 1/5
1/5.8 = 1/5 - 1/8
1/8.11 = 1/8 - 1/11
...
1/92.95 = 1/92 - 1/95
1/95.98 = 1/95 - 1/98
Ta có: 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 +...+ 1/92 - 1/95 + 1/95 - 1/98
3 = 3/2.5 + 3/5.8 + 3/8.11 + ...+ 3/92.95 + 3/95.98
3 = 1 - 1/2 + 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 +...+ 1/92 - 1/95 + 1/95 - 1/98
= 1 - 1/98
= 97/98 : 3 = 97/98 x 1/3 = (tự tính)
\(\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\)
\(\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]=\frac{1}{3}.\frac{9}{20}=\frac{3}{20}\)
mk đầu tiên đó
Đặt \(A=\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1504}\)
\(A=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{x}-+\frac{1}{x+3}\right)\)
\(A=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)\)
\(A=\frac{1}{3}\left(\frac{\left(x+3\right)-5}{5\left(x+3\right)}\right)\)
\(A=\frac{\left(x+3\right)-5}{15\left(x+3\right)}\)
1504 không chia hết cho 3;5 nên ta xét tủ :
x + 3 - 5 = 101
x + 3 = 106
x = 103
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(x=308-3=305\)
VẬY x = 305
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+3}=-\frac{3}{10}\)
\(\Leftrightarrow1\cdot10=-3\left(x+3\right)\)
\(\Leftrightarrow10=-3x-9\)
\(\Leftrightarrow10+9=-3x\)
\(\Leftrightarrow19=-3x\)
\(\Leftrightarrow x=-\frac{19}{3}\)
Đề sai à -.-
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{1}{6}\)
=> \(\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{1}{6}\)
=> \(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{1}{6}:\frac{1}{3}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{1}{6}\cdot3=\frac{1}{2}\)
=> \(\frac{1}{x+3}=\frac{1}{5}-\frac{1}{2}=-\frac{3}{10}\)
=> \(10=-3\left(x+3\right)\)
=> 10 = -9x - 9
=> 10 + 9x + 9 = 0
=> 19 + 9x = 0
=> 9x = -19
=> x = -19/9
A = \(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
A = \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)
A = \(\frac{1}{2}-\frac{1}{98}\)
A = \(\frac{24}{49}\)
Vậy A = \(\frac{24}{49}\)
~~~
#Sunrise
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{92.95}+\frac{1}{95.98}\)
\(=\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=\frac{1}{3}.\frac{24}{49}=\frac{8}{49}\)
#)Giải :
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\)
\(\Rightarrow3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{99.101}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{101}\)
\(\Rightarrow3A=\frac{99}{202}\)
\(\Leftrightarrow A=\frac{33}{202}\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{101}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(A=\frac{1}{3}.\frac{99}{202}=\frac{33}{202}\)
\(\frac{1}{5\times8}+\frac{1}{8\times11}+...+\frac{1}{x\times\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}\times\left(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{x\times\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{101}{1540}\div\frac{1}{3}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1504}\times3\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(x+3=308\)
\(x=308-3\)
x = 305
Chúc bạn học tốt ^^
\(\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\frac{1}{5}-\frac{1}{3}-\frac{1}{x+3}=\frac{101}{1540}\)
\(\frac{1}{15}-\frac{1}{x+3}=\frac{101}{1540}\)
\(\frac{1}{x+3}=\frac{1}{15}-\frac{101}{1540}\)
\(\frac{1}{x+3}=\frac{1}{924}\)
=> x = 924 -3
=> x = 921
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{302.305}\)
=\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)
=\(\frac{1}{5}-\frac{1}{305}\)
=\(\frac{12}{61}\)
tick cho mik nha
Nhầm bạn ơi
Lúc đầu nhân 3 xong lúc cuối chia cho 3 nha
Đáp án là \(\frac{12}{61}:3=\frac{4}{61}\) sr bạn