Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{100}-\frac{1}{100.98}-\frac{1}{98.96}-....-\frac{1}{6.4}-\frac{1}{4.2}\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100.98}+\frac{1}{98.96}+....+\frac{1}{6.4}+\frac{1}{4.2}\right)\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{98}+\frac{1}{98}-\frac{1}{96}+.....+\frac{1}{6}-\frac{1}{4}+\frac{1}{4}-\frac{1}{2}\right)\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{2}\right)\Rightarrow A=\frac{1}{100}-\frac{1}{100}+\frac{1}{2}\Rightarrow A=\frac{1}{2}\)
\(A=\frac{1}{100}-\frac{1}{100.98}-\frac{1}{98.96}-...-\frac{1}{6.4}-\frac{1}{4.2}\)
\(A=\frac{1}{100}-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{96.98}+\frac{1}{98.100}\right)\)
\(A=\frac{1}{100}-\frac{1}{2.2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{48.49}+\frac{1}{49.50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\left(1-\frac{1}{50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\frac{49}{50}\)
\(A=\frac{2}{200}-\frac{49}{200}=-\frac{47}{200}\)
b) \(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right)\frac{2-\left(1+3+5+7+..+49\right)}{12}\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\frac{2-\left(12.50+25\right)}{89}=-\frac{5.9.7.89}{5.4.7.7.89}=\frac{-9}{28}\)
\(a,A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-..-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{100}-\left(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\right)\)
\(A=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-1+\frac{1}{100}\)
\(A=\frac{2}{100}-1\)
\(A=\frac{1}{50}-1\)
\(A=\frac{-49}{50}\)
b,\(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n=2^{n+34}\) (1)
Đặt \(B=2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n\)
\(\Rightarrow2B=2.\left(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n\right)\)
\(=2.2^3+3.2^4+4.2^5+...+\left(n-1\right).2^n+n.2^{n+1}\)
\(2B-B=\left(2.2^3+3.2^4+4.2^5+..+\left(n-1\right).2^n+n.2^{n+1}\right)\)
\(=(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n)\)
\(B=-2^3-2^4-2^5-...-2^{n+1}-2.2^2\)
\(=-\left(2^3+2^4+2^5+...+2^n\right)+n.2^{n+1}-2^3\)
Đặt \(C=2^3+2^4+2^5+2^n\)
\(\Rightarrow2C=2.(2^3+2^4+2^5+...+2^n)\)
\(C=2^4+2^5+2^6+...+2^{n+1}\)
\(2C-C=\left(2^4+2^5+2^6+...+2^{n+1}\right)-\left(2^3+2^4+2^5+...+2^n\right)\)
\(C=2^{n+1}-2^3\)
Khi đó : \(B=-(2^{n+1}-2^3)+n.2^{n+1}-2^3\)
\(=-2^{n+1}+2^3+n.2^{n+1}-2^3\)
=\(=-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n-1}\)
Vậy từ (1) ta có:\(\left(n-1\right),2^{n+1}=2^{n+34}\)
\(2^{n+34}-\left(n-1\right).2^{n+1}=0\)
\(2^{n+1}.[2^{33}-\left(n-1\right)]=0\)
Do đó \(2^{33}-n+1=0\)( Vì \(2^{n+1}\ne0\)với mọi \(n\))
\(n=2^{33}+1\)
Vậy \(n=2^{33}+1\)
a) \(\frac{790^4}{79^4}=\frac{79^4.10^4}{79^4}=10^4=10000\)
b) \(\frac{3^2}{0,375^2}=\frac{0,375^2.8^2}{0,375^2}=8^2=64\)
c) \(3^2.\frac{1}{243}.81^2.\frac{1}{3^3}=3^2.3^{-5}.3^8.3^{-3}=3^2=9\)
d) \(\left(4.2^5\right):\left(2^3.\frac{1}{16}\right)=2^7:\left(2^3.2^{-4}\right)=2^7:2^{-1}=2^7:\frac{1}{2}=2^8\)
Mk làm lun, ko viết lại đề bài nữa nhé =))
a) \(\Leftrightarrow\)\(3^2.3^{n+1}=9^4\)
\(\Leftrightarrow3^{n+1}=9^4:3^2\)
\(\Leftrightarrow3^{n+1}=3^6\)
\(\Rightarrow n+1=6\)
\(\Leftrightarrow n=6-1\)
\(\Rightarrow n=5\)
b)\(\Leftrightarrow2^n.\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Leftrightarrow2^n.\frac{9}{2}=9.2^5\)
\(\Rightarrow2^n=\left(9.2^5\right):\frac{9}{2}\)
\(\Rightarrow2^n=468:\frac{9}{2}\)
Tự tính nốt KQ giúp mk nha ♥
Đặt \(A=\frac{1}{50.48}-\frac{1}{48.46}-...-\frac{1}{4.2}\) ta có :
\(A=\frac{1}{48.50}-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{46.48}\right)\) ( xắp sếp lại cho đẹp đội hình thôi :)
Đặt \(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{46.48}\) ta có :
\(2B=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{46.48}\)
\(2B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{46}-\frac{1}{48}\)
\(2B=\frac{1}{2}-\frac{1}{48}\)
\(2B=\frac{23}{48}\)
\(B=\frac{23}{48}:2\)
\(B=\frac{23}{48}.\frac{1}{2}\)
\(B=\frac{23}{96}\)
\(\Rightarrow\)\(A=\frac{1}{48.50}-B=\frac{1}{48.50}-\frac{23}{96}=\frac{1}{2400}-\frac{23}{96}=\frac{-287}{1200}\)
Vậy \(A=\frac{-287}{1200}\)
Chúc bạn học tốt ~