\(\frac{1,4\cdot317+0,14\cdot3520+33,1\cdot14}{2+5+8+.....+65-387}\) 


 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

 ta có A =\(\frac{1}{5\cdot8}+\frac{1}{8\cdot12}+\frac{1}{12\cdot15}+...+\frac{1}{605\cdot608}\)

3A =\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{605\cdot608}\)

3A =\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{605}-\frac{1}{608}\)

3A=\(\frac{1}{5}-\frac{1}{608}\)

3A=\(\frac{603}{3040}\)A =\(\frac{201}{3040}\)

3 tháng 2 2017

Đặt A=\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{605.608}\)

      3A=\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{605.608}\right)\)

      3A=\(3.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{605}-\frac{1}{608}\right)\)

      3A=3.\(\left(\frac{1}{5}-\frac{1}{608}\right)\)

       A=\(\frac{201}{3040}\)

(x+1/4-1/3).(13/6-1/4)=7/46

(x+1/4-1/3).23/12=7/46

(x+1/4-1/3)=7/46:23/12

(x+1/4-1/3)=7/46.12/23

(x+1/4-1/3)=42/529

x+1/4=42/529+1/3

x+1/4=655/1587

x=655/1587-1/4

x=1033=/6348

vậy x=1033/6348

8 tháng 4 2016

a.2/3 + 1/3 - x= 3/5

=> 1-x = 3/5

=>  x = 1-3/5= 2/5

b. 1/8/15 - 2/3x = 0,2

=> 2/3x= 23/15 - 1/5= 4/3

=> x= 4/3 : 2/3=2

c. 2/3x -3/2x = 5/12

=> x( 2/3 - 3/2) = 5/12

=> x. -5/6 = 5/12

=> x= 5/12 : -5/6

=> x= -1/2

a) 2/3 + 1/3 - x = 3/5

=> 1 - x = 3/5

=> x = 1 - 3/5

     x = 2/5

b) \(1\frac{8}{15}-\frac{2}{3}x=0,2\)

=> 23/15 - 2/3x = 0,2

=> 2/3x = 23/15 - 0,2

    2/3x = 1,333333333

=>x = 1,333333333 : 2/3

    x = 2

c) ???

22 tháng 6 2020

a, \(\frac{-3}{5}+\frac{7}{21}+\frac{-4}{5}+\frac{7}{5}\)

\(=\left(\frac{-3}{5}+\frac{-4}{5}+\frac{7}{5}\right)+\frac{7}{21}\)

\(=0+\frac{7}{21}\)

\(=\frac{7}{21}\)

\(=\frac{1}{3}\)

b, \(\frac{8}{9}+\frac{1}{9}.\frac{7}{9}+\frac{1}{9}.\frac{2}{9}\)

\(=\frac{8}{9}+\frac{1}{9}.\left(\frac{7}{9}+\frac{2}{9}\right)\)

\(=\frac{8}{9}+\frac{1}{9}.1\)

\(=\frac{8}{9}+\frac{1}{9}\)

\(=1\)

22 tháng 6 2020

a) \(\frac{-3}{5}\)+\(\frac{7}{21}\)+\(\frac{-4}{5}\)+\(\frac{7}{5}\)

=(\(\frac{-3}{5}\)+\(\frac{-4}{5}\)+\(\frac{7}{5}\)) +\(\frac{7}{21}\)

= 0+

3 tháng 2 2019

\(G=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+..............+\frac{1}{3^{100}}\)

\(3G=1+\frac{1}{3}+\frac{1}{3^2}+...............+\frac{1}{3^{99}}\)

\(3G-G=\left(1+\frac{1}{3}+\frac{1}{3^2}+..........+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...............+\frac{1}{3^{100}}\right)\)

\(2G=1-\frac{1}{3^{100}}\)

\(\Rightarrow G=\left(1-\frac{1}{3^{100}}\right):2\)

18 tháng 3 2017

a, \(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)

=> x + 3 = 308

     x = 308 - 3

     x = 305

b, \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=1\frac{1991}{1993}\)

\(\Rightarrow\frac{1}{2}\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{1}{2}.\frac{3984}{1993}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{1992}{1993}\)

\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1992}{1993}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1992}{1993}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{1992}{1993}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{1992}{1993}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{1993}\)

=> x + 1 = 1993

     x = 1993 - 1

     x = 1992

18 tháng 3 2017

a ,\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}.3\)

\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(x=308-3\)

\(x=305\)

15 tháng 4 2019

\(\left(2+\frac{5}{6}\right)\div1\frac{1}{5}+\frac{-7}{12}\)

\(=\left(\frac{12}{6}+\frac{5}{6}\right)\div\frac{6}{5}-\frac{7}{12}\)

\(=\frac{17}{6}\div\frac{6}{5}-\frac{7}{12}\)

\(=\frac{17}{6}\times\frac{5}{6}-\frac{7}{12}\)

\(=\frac{85}{12}-\frac{7}{12}\)

\(=\frac{78}{12}=\frac{13}{2}\)

15 tháng 4 2019

\(\left(15-6\frac{13}{18}\right)\div11\frac{1}{7}-2\frac{1}{8}\div1\frac{11}{40}\)

\(=9\frac{13}{18}\div\frac{78}{7}-\frac{17}{8}\div\frac{51}{40}\)

\(=\frac{175}{18}\div\frac{78}{7}-\frac{17}{8}\times\frac{40}{51}\)

\(=\frac{175}{18}\times\frac{7}{78}-\frac{5}{3}\)

\(=\frac{1225}{1404}-\frac{5}{3}\)

\(=\frac{1225}{1404}-\frac{2340}{1404}\)

\(=\frac{-1115}{1404}\)

a: \(=\left(-\dfrac{25}{140}+\dfrac{245}{140}+\dfrac{32}{140}\right)\cdot\dfrac{-69}{20}\)

\(=\dfrac{252}{140}\cdot\dfrac{-69}{20}\)

\(=\dfrac{9}{5}\cdot\dfrac{-69}{20}=\dfrac{-621}{100}\)

b: \(=\left(6-2-\dfrac{4}{5}\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)

\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}=\dfrac{18}{5}\)

c: \(=\left(\dfrac{2}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)

\(=\dfrac{34}{24}\cdot\dfrac{-8}{17}=\dfrac{-1}{3}\cdot2=-\dfrac{2}{3}\)