K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2017

Ta có:

\(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{x.\left(x+4\right)}=\frac{5}{63}\)

\(=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{x.\left(x+4\right)}\right)=\frac{5}{63}\)

\(\Rightarrow\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{x}-\frac{1}{x+4}\right)=\frac{5}{63}:\frac{1}{4}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{x+4}=\frac{20}{63}\Leftrightarrow\frac{1}{x+4}=\frac{1}{63}\Leftrightarrow x=63-4=59\)

9 tháng 9 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\)\(=\frac{24}{50}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x.1}\)=\(\frac{24}{50}\)

=\(\frac{1}{2}-\frac{1}{x.1}=\frac{24}{50}\)

=\(\frac{1}{x.1}=\frac{1}{2}-\frac{24}{50}\)

=\(\frac{1}{x.1}=\frac{1}{50}\)

\(\Rightarrow\)\(x.1=50\)

\(\Rightarrow x=50\)

31 tháng 7 2018

\(\frac{1}{3}\) + \(\frac{5}{6}\)\(\left(x-2\frac{1}{5}\right)\)\(\frac{3}{4}\)

<=> \(\frac{5}{6}\):\(\left(x-2\frac{1}{5}\right)\)\(\frac{3}{4}\)\(\frac{1}{3}\)

<=> \(\frac{5}{6}\) : \(\left(x-2\frac{1}{5}\right)\) = \(\frac{5}{12}\)

<=> \(\left(x-2\frac{1}{5}\right)\) =    \(\frac{5}{6}\) : \(\frac{5}{12}\)

,<=> \(\left(x-2\frac{1}{5}\right)\)=   2 

<=. x = 2 + \(\frac{11}{5}\)

<=> x = \(\frac{21}{5}\)

30 tháng 4 2017

 \(\frac{5}{6}\)\(+\frac{41}{6}+\left(\frac{225}{20}-\frac{37}{4}\right):\frac{25}{3}=\frac{23}{3}+2:\frac{25}{3}=\frac{23}{3}+\frac{6}{25}=\frac{593}{75}\)

11 tháng 6 2020

\(\frac{5}{6}+6\frac{5}{6}.\left(11\frac{5}{20}-9\frac{1}{4}\right):8\frac{1}{3}\)

\(=\frac{5}{6}+\frac{41}{6}.\left(\frac{45}{4}-\frac{37}{4}\right):\frac{25}{3}\)

\(=\frac{5}{6}+\frac{41}{6}.2.\frac{3}{25}\)

\(=\frac{5}{6}+\frac{41}{25}\)

\(=\frac{371}{150}\)

17 tháng 9 2017

tính E phải ko bạn

17 tháng 9 2017

E= 217/292

6 tháng 10 2017

\(P=\frac{1}{5x8}+\frac{1}{8x11}+.....+\frac{1}{602x605}\)

\(\Rightarrow3P=\frac{3}{5x8}+\frac{3}{8x11}+......+\frac{3}{602x605}\)

\(\Rightarrow3P=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-.....+\frac{1}{602}-\frac{1}{605}\)

\(\Rightarrow3P=\frac{1}{5}-\frac{1}{605}\)

\(\Rightarrow3P=\frac{24}{121}\)

\(\Rightarrow P=\frac{24}{121}:3\)

\(\Rightarrow P=\frac{8}{121}\)

6 tháng 10 2017

\(Q=\frac{4}{3x7}+\frac{5}{7x12}+\frac{1}{12x13}+\frac{7}{13x20}+\frac{3}{20x23}\)

\(Q=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+\frac{1}{13}-\frac{1}{20}+\frac{1}{20}-\frac{1}{23}\)

\(Q=\frac{1}{3}-\frac{1}{23}\)

\(Q=\frac{20}{69}\)

10 tháng 9 2017

\(G=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(G=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

\(3G=3+1+\frac{1}{3}+...+\frac{1}{3^4}\)

\(3G-G=\left(3+1+...+\frac{1}{3^4}\right)-\left(1+\frac{1}{3}+...+\frac{1}{3^5}\right)\)

\(2G=3-\frac{1}{3^5}\)

\(2G=3-\frac{1}{243}\)

\(2G=\frac{729}{243}-\frac{1}{243}\)

\(G=\frac{728}{243}:2\)

\(G=\frac{364}{243}\)

\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{x.\left(x+1\right)}=\frac{6042}{2015}\)

\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{6042}{2015}\)

\(1-\frac{1}{x+1}=\frac{6042}{2015}:3\)

\(1-\frac{1}{x-1}=\frac{2014}{2015}\)

\(\frac{1}{x-1}=1-\frac{2014}{2015}\)

\(\frac{1}{x-1}=\frac{1}{2015}\)

\(\Rightarrow x-1=2015\)

\(\Rightarrow x=2016\)

10 tháng 9 2017

\(C=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\)

\(C=\frac{2}{3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)

\(C=\frac{2}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)

\(C=\frac{2}{3}+\frac{1}{3}-\frac{1}{13}\)

\(C=1-\frac{1}{13}\)

\(C=\frac{12}{13}\)

10 tháng 9 2017

\(C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\)

\(C=\frac{1}{1}-\frac{1}{3}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)

\(C=\frac{1}{1}-\frac{1}{13}\)

\(C=\frac{12}{13}\)

29 tháng 6 2017

Ta có :

\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{23.27}\)

\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+....+\frac{1}{23}-\frac{1}{27}\)

\(=\frac{1}{3}-\frac{1}{27}==\frac{9}{27}-\frac{1}{27}=\frac{8}{27}\)

29 tháng 6 2017

Đặt \(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}++\frac{4}{19.23}+\frac{4}{23.27}\)

\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)

\(A=\frac{1}{3}-\frac{1}{27}\)

\(A=\frac{8}{27}\)