\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{x\left(x-1\right)}=\frac{2015}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Rightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(\Rightarrow2\cdot\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}\div2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4032}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4032}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{4032}\)

\(\Rightarrow x+1=4032\Rightarrow x=4031\)

Vậy \(x=4031\)

7 tháng 6 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.x+1}\right)=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}:2\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2032}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{2032}\)

=> \(\frac{1}{x+1}=\frac{1}{2032}\)

Vì 1 = 1

=> x + 1 = 2032

=> x = 2032 - 1

=> x = 2031

7 tháng 5 2018

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2015}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)

\(1-\frac{1}{x+1}=1-\frac{2015}{2016}\)

\(\frac{1}{x+1}=\frac{1}{2016}\)

\(x=2016-1\)

\(\Rightarrow x=2015\)

25 tháng 3 2018

x=2009 dễ mà

23 tháng 3 2018

mk làm câu c cho nó dễ

c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010

=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010

=1-1/x+1=2009/2010

=1/x+1=1-2009/2010

=1/x+1=1/2010

=) x+1=2010

x         =2010-1

x         =2009

8 tháng 6 2019

Bài 1:

\(a,22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)

=\(\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)

=\(\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)

=\(\frac{70}{4}+\frac{2}{4}-\frac{5}{4}\)

=\(\frac{67}{4}\)

\(b,1,4.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)

=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{12}{15}+\frac{10}{15}\right):\frac{11}{5}\)

=\(\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)

=\(\frac{3}{7}-\frac{2}{3}\)

=\(-\frac{5}{21}\)

\(c,125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,6\right)+2016^0\)

=\(\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{8}{5}\right)+1\)

=\(\frac{5}{16}:\frac{7}{30}+1\)

=\(\frac{131}{56}\)

\(d,1,4.\frac{15}{49}-\left(20\%+\frac{2}{3}\right):2\frac{1}{5}\)

=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{1}{5}+\frac{2}{3}\right):\frac{11}{5}\)

=\(\frac{3}{7}-\frac{13}{15}:\frac{11}{5}\)

=\(\frac{3}{7}-\frac{13}{33}\)

=\(\frac{8}{231}\)

Bài đ làm giống hệt như bài c

Bài 2 :

\(a,\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)

=>\(\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}=1\\x=\frac{1}{4}:\frac{3}{4}=\frac{1}{3}\end{matrix}\right.\)

Vậy x ∈{1;\(\frac{1}{3}\)}

\(b,\frac{5}{3}.x-\frac{2}{5}.x=\frac{19}{10}\)

=>\(\frac{19}{15}.x=\frac{19}{10}\)

=>\(x=\frac{19}{10}:\frac{19}{15}=\frac{3}{2}\)

Vậy x ∈ {\(\frac{3}{2}\)}

c,\(\left|2.x-\frac{1}{3}\right|=\frac{2}{9}\)

=>\(\left[{}\begin{matrix}2.x-\frac{1}{3}=\frac{2}{9}\\2.x-\frac{1}{3}=-\frac{2}{9}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2.x=\frac{2}{9}+\frac{1}{3}=\frac{5}{9}\\2.x=-\frac{2}{9}+\frac{1}{3}=\frac{1}{9}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\frac{5}{9}:2=\frac{5}{18}\\x=\frac{1}{9}:2=\frac{1}{18}\end{matrix}\right.\)

Vậy x∈{\(\frac{5}{18};\frac{1}{18}\)}

\(d,x-30\%.x=-1\frac{1}{5}\)

=\(70\%x=-\frac{6}{5}\)

=\(\frac{7}{10}.x=-\frac{6}{5}\)

=>\(x=-\frac{6}{5}:\frac{7}{10}=-\frac{12}{7}\)

Vậy x∈{\(-\frac{12}{7}\)}

8 tháng 6 2019

Bài 2

a/

\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{3}{4}\\\frac{3}{4}.x=\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}\\x=\frac{1}{4}:\frac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy \(x=1\) hoặc \(x=\frac{1}{3}\)

b/ Đặt x làm thừa số chung rồi tính như bình thường

c/ Tương tự câu a

d/ Tương tự câu b

17 tháng 7 2016

a, \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)

\(\Leftrightarrow-\frac{1}{10}x=-\frac{11}{10}\)

\(\Leftrightarrow x=11\)

b,\(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)

\(\Leftrightarrow\frac{1}{7}x-\frac{2}{7}=0\)hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\)hoặc \(\frac{1}{3}x+\frac{4}{3}=0\)

+) \(\frac{1}{7}x-\frac{2}{7}=0\Leftrightarrow\frac{1}{7}x=\frac{2}{7}\Leftrightarrow x=2\)

+)\(-\frac{1}{5}x+\frac{3}{5}=0\Leftrightarrow-\frac{1}{5}x=-\frac{3}{5}\Leftrightarrow x=3\)

+)\(\frac{1}{3}x+\frac{4}{3}=0\Leftrightarrow\frac{1}{3}x=-\frac{4}{3}\Leftrightarrow x=-4\)

  c, \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{2}x=\frac{4}{9}\)

\(\Leftrightarrow x=\frac{8}{9}\)

17 tháng 7 2016

a/ \(\frac{1}{6}x+\frac{1}{10}-\frac{4}{15}x+1=0\)

    \(\Rightarrow-\frac{1}{10}x=-\frac{11}{10}\)

     \(\Rightarrow x=11\)

b/ \(\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)

   \(\Rightarrow\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{1}{7}x=\frac{2}{7}\Rightarrow x=2\)

hoặc \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow-\frac{1}{5}x=-\frac{3}{5}\Rightarrow x=3\)

hoặc \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{1}{3}x=-\frac{4}{3}\Rightarrow x=-4\)

                                              Vậy x = 2, x = 3, x = -4

c/ \(\frac{1}{2}x-\frac{11}{15}:\frac{33}{35}=-\frac{1}{3}\)

     \(\Rightarrow\frac{1}{2}x-\frac{7}{9}=-\frac{1}{3}\)

      \(\Rightarrow\frac{1}{2}x=\frac{4}{9}\Rightarrow x=\frac{8}{9}\)

                                                                       Vậy x = 8/9

16 tháng 5 2016

Đặt A=1/3+1/6+1/10+...+2/x*(x+1)

        1/2A=1/3*2+1/6*2+1/10*2+...+2/2*x*(x+1)

         1/2A=1/6+1/12+1/20+...+1/x*(x+1)

          1/2A=1/2*3+1/3*4+1/4*5+...+1/x*(x+1)

           1/2A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)

           1/2A=1/2-1/x+1

           A=(1/2-1/x+1):1/2

          A=1-2/x+1

Ta có A=1999/2001

Hay 1-2/x+1=1999/2001

           2/x+1=1-1999/2001

          2/x+1=2/2001

=>x+1=2001

=>x=2000

16 tháng 5 2016

Cho A = 1/3+1/6+1/10+...+2/x(x+1)

    1/2A= 1/3.2+1/6.2+1/10.2+...+2/x(x+1)2

    1/2A= 1/6+1/12+1/20+...+1/x(x+1)

    1/2A= 1/2.3+1/3.4+1/4.5+...+1/x(x+1)

    1/2A= 1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1

    1/2A= 1/2-1/x+1

    A      = (1/2-1/x+1)/1/2

    A      = 1-2/x+1

Mà A=1999/2001

=> 1-2/x+1= 1999/2001

         2/x+1= 1-1999/2001

         2/x+1= 2/2001

     =>x+1=2001

     =>x     = 2000

 

6 tháng 4 2018

\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}\)

=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10-1}{1}+\frac{10-2}{2}+...+\frac{10-9}{9}\)

=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10}{1}-1+...+\frac{10}{9}-1\)

=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10-9+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}\)=  \(\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}\)

=>\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)

=> \(x=10\)

b) Tương tự câu a