\(\frac{1}{3}\)+\(\frac{1}{6}\).(1+2)+\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

\(D=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)

Làm tắt nha :

\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)

\(D=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(D=\frac{1}{2}.\frac{98}{99}-\frac{1}{2}.\frac{98}{100}\)

\(D=\frac{1}{2}\left(\frac{98}{99}-\frac{98}{100}\right)\)

Tự tính nốt nha 

19 tháng 9 2019

Ta có: \(B=\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}\)

\(B=1+\left(\frac{1}{2016}+1\right)+\left(\frac{2}{2015}+1\right)+\left(\frac{3}{2014}+1\right)+...+\left(\frac{2015}{2}+1\right)\)

\(B=\frac{2017}{2017}+\frac{2017}{2016}+\frac{2017}{2015}+\frac{2017}{2014}+...+\frac{2017}{2}\)

\(B=2017.\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{2017.\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{2}\right)}\)

\(\Rightarrow\frac{A}{B}=\frac{1}{2017}.\)

Chúc bạn học tốt!

15 tháng 12 2019

Này Vũ Minh Tuấn, mk cũng có 1 bài cũng gần giống như thế này nhưng khác 1 tí cậu giải giúp mk vs

Bài 2:

a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)

\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)

b) \(\left(2x-1\right).\left(2x+3\right)=0\)

\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)

\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)

d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

28 tháng 7 2019

Bài 2:

a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)

=> \(x:\frac{1}{45}=\frac{1}{2}\)

=> \(x=\frac{1}{2}.\frac{1}{45}\)

=> \(x=\frac{1}{90}\)

Vậy \(x=\frac{1}{90}.\)

b) \(\left(2x-1\right).\left(2x+3\right)=0\)

=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)

Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.

Chúc bạn học tốt!