Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(10\frac{2}{9}.2\frac{3}{5}\right)-6\frac{2}{9}=\frac{1196}{45}-\frac{56}{9}=\frac{1196}{45}-\frac{280}{45}=\frac{916}{45}\)
\(b,\frac{6}{7}+\frac{1}{7}.\frac{2}{7}+\frac{1}{7}.\frac{5}{7}=\frac{1}{7}\left(6+\frac{2}{7}+\frac{5}{7}\right)=\frac{1}{7}.7=1\)
\(c,3.136.8+4.14.6-14.150=3264+336-2100=1500\)
\(d,\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)\(=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
\(e,\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}=\frac{1}{3}-\frac{1}{39}=\frac{4}{13}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
= \(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{2x+1}+\frac{1}{2x+1}-\frac{1}{2x+3}\right)\)
= \(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{1}{6}-\frac{1}{4x+6}\)
Đặt \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{\left(2x+1\right)}-\frac{1}{2x+3}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{2x+3}\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2x+3}\right)\)
\(\Rightarrow A=\frac{1}{6}-\frac{1}{4x+6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 :
=\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}.\)
=\(\frac{1}{3}-\frac{1}{7}=\frac{4}{21}.\)
Câu 2 :
=\(\frac{23.23+6}{23.\left(23+1\right)-17}\)
=\(\frac{23.23+6}{23.23+23-17}\)
=\(\frac{23.23+6}{23.23+6}\)
=1.
![](https://rs.olm.vn/images/avt/0.png?1311)
n=\(\frac{2}{3}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
n=\(\frac{2}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
n=\(\frac{2}{3}\left(1-\frac{1}{99}\right)\)
n=\(\frac{2}{3}\times\frac{98}{99}\)
n=\(\frac{196}{297}\)
Câu \(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{2}{99.100}\)Bạn viết \(\frac{3}{99.100}=\frac{2}{99.100}\)mik sửa lại nhé.
\(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\)
\(M=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{100-99}{99.100}\)
\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(M=\frac{3}{2}.\frac{99}{100}=\frac{297}{200}\)
\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{97.99}\)
\(N=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{99-97}{97.99}\)
\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)\)
\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(\Rightarrow N=\frac{3}{2}.\frac{98}{99}=\frac{49}{33}\)
Ta thấy : \(\frac{297}{200}>\frac{49}{33}\Rightarrow M>N\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2.2}{1.3}x\frac{3.3}{2.4}x\frac{4.4}{3.5}x\frac{5.5}{4.6}x\frac{6.6}{5.7}\)=\(2.\frac{2}{3}.\frac{3}{2}.\frac{3}{4}.\frac{4}{3}.\frac{4}{5}.\frac{5}{4}.\frac{5}{6}.\frac{6}{5}.\frac{6}{7}\)
\(=2.\frac{6}{7}=\frac{12}{7}\)
22/1.3 × 32/2.4 × 42/3.5 × 52/4.6 × 62/5.7
= 2.3.4.5.6/1.2.3.4.5 × 2.3.4.5.6/3.4.5.6.7
= 6 × 2/7
= 12/7
Đặt \(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{37\cdot39}\)
\(\Rightarrow2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{37\cdot39}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{37}-\frac{1}{39}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{39}=\frac{12}{39}\)
\(\Rightarrow A=\frac{12}{39}:2=\frac{12}{39}\cdot\frac{1}{2}=\frac{2}{13}\)