K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

Gọi biểu thức trên là A.

Ta có : 2A = \(\frac{2}{3.5}+\frac{2}{5.7}+................+\frac{2}{89.91}\)

2A = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.............+\frac{1}{89}-\frac{1}{91}\)

=> 2A = \(\frac{1}{3}-\frac{1}{91}=\frac{88}{273}\)

=> A = \(\frac{88}{273}\div2=\frac{44}{273}\)

k cho mình nha bạn

25 tháng 3 2016

Goi tong tren la : A

Ta co: A = 1/3.5 + 1/5.7 + 1/7.9 + ......+ 1/89.91

2A = 2/3.5 + 2/5.7 +......+ 2/89.91

2A = 1/3 - 1/5 + 1/5 - 1/7 +......+ 1/89 - 1/91

2A = 1/3 - 1/91

2A = 88/273

A = 44/273

22 tháng 4 2018

\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}\)

\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)\)

\(=\frac{1}{2}\cdot\frac{4}{15}\)

\(=\frac{2}{15}\)

22 tháng 4 2018

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{13.15}\)

\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{1}{13.15}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)\)

\(=\frac{1}{2}.\)4/15

=2/15

28 tháng 8 2017

\(M=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

\(M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)

\(M=\frac{1}{3}-\frac{1}{13}\)

\(M=\frac{10}{39}\)

28 tháng 8 2017

\(M=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)

\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)

\(M=\frac{1}{2}.\frac{10}{39}\)

\(M=\frac{5}{39}\)

tk mk nha bn

\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)

\(=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)

4 tháng 6 2015

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)

11 tháng 5 2018

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{87.89}\)

\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{87}-\frac{1}{89}\right)\)

\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{89}\right)\)

\(\frac{1}{2}.\frac{86}{267}=\frac{43}{267}\)

~~~
Đáp số to quá, tớ không chắc là mình đúng đâu.

#Sunrise

11 tháng 5 2018

=1/3-1/5+1/5-1/7+1/7-1/9+.....+1/87-1/89

=1/3-1/89

=86/267

2 tháng 5 2018

Q = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)

Q = \(\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{2013.2015}\right)\)

Q =  \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2015}\right)\)

Q = \(\frac{1}{2}.\frac{2012}{6045}=\frac{1002}{6045}\)

2 tháng 5 2018

\(Q=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\)

\(\Rightarrow Q.2=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\right)\)

\(\Rightarrow Q.2=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2013.2015}\)

\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{2015}\)

\(\Rightarrow Q.2=\frac{2012}{6045}\)

\(\Rightarrow Q=\frac{2012}{6045}.\frac{1}{2}=\frac{1006}{6045}\)

Mk tinh nhẩm, nên ko bt kết quả có đúng ko

nên bn thử tính lại kết quả nha!!!

Chúc bn hok tốt!!!

22 tháng 8 2020

\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}.\frac{4}{15}=\frac{2}{15}\)

22 tháng 8 2020

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\cdot\frac{4}{15}=\frac{2}{15}\)

8 tháng 9 2016

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

  \(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)

  \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

\(=\frac{4}{9}-\frac{1}{5}\)

\(=\frac{11}{45}\)

 

8 tháng 9 2016

Cảm ơn giúp  bài nữa nha !!

10 tháng 7 2017

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{43.45}\)

\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{43.45}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{43}-\frac{1}{45}\)

\(=\frac{1}{3}-\frac{1}{45}=\frac{15}{45}-\frac{1}{45}=\frac{14}{45}\)

\(\Rightarrow A=\frac{14}{45}:2=\frac{14}{90}=\frac{7}{45}\)

Vậy \(A=\frac{7}{45}\).

10 tháng 7 2017

Áp dụng công thức : \(\frac{1}{a}-\frac{1}{a+n}=\frac{n}{a\left(a+n\right)}\)

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{43\cdot45}\)

\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{43}-\frac{1}{45}\right)\)

\(A=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{45}\right)\)

\(A=\frac{1}{2}\cdot\frac{14}{45}=\frac{7}{45}\)

23 tháng 2 2017

\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

23 tháng 2 2017

S=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{95.97}+\frac{1}{97.99}\)

S=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right)\)

S=\(\frac{1}{2}.\left(1-\frac{1}{99}\right)\)

S=\(\frac{1}{2}.\frac{98}{99}\)

S=\(\frac{49}{99}\)