Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = -1 - 2 - 3 - ... - 100
= -(1 + 2 + 3 + ... + 100)
= -100.101 : 2
= -5050
--------
B = -2 - 4 - 6 - ... - 100
= -(2 + 4 + 6 + ... + 100)
Số số hạng của B:
(100 - 2) : 2 + 1 = 50 (số)
B = -(100 + 2) . 50 : 2 = -2550
--------
C = -6 - 9 - 12 - ... - 99
= -(6 + 9 + 12 + ... + 99)
Số số hạng của C:
(99 - 6) : 3 + 1 = 32 (số)
C = -(99 + 6) . 32 : 2 = -1680
--------
D = 4 - 8 + 12 - 16 + ... + 196 - 200
Số số hạng của D:
(200 - 4) : 4 + 1 = 50 (số)
D = (4 - 8) + (12 - 16) + ... + (196 - 200)
= -4 + (-4) + ... + (-4) (25 số -4)
= -4.25
= -100
b, B=10+(-11)+...+(-99)+100
B = (10+(-11))+(12+(-13))+...+(98+(-99))+100
B = (-1)+(-1)+....+(-1)+100 ( có 45 số -1)
B= (-1).45 +100
B=-45 +100
B = 55
c, (1+2+(-3)+(-4))+(5+6+(-7)+(-8)) + ....+(97+98+(-99)+(-100)
= (-4)+(-4)+....+(-4) (có 25 nhóm)
= (-4).25 = 100
d= số số hạng trong D là : (200-2)/2+1 = 100
D= ((-200)+(-2)).100/2 = -10100
Ta có \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+......+\frac{99}{100}}\)
\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)}\)
\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\)
\(\Rightarrow A=2\)
A=100-98+...+4-2(100 -98 =2 là 1 cặp => A có 25 cặp)
=25 . 2 =50
b ( mk hok bt lm )
C=1+2-3-4+5+6-7-8+...-95-96+97+98( 1+2-3-4 là 1 cặp => có 24 cặp dưa 97 và 98)
= (24 . -4) + 97 + 98 =-96 + 97 + 98 =99
T I C K mk nha!!
\(\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\left(\frac{9}{24}+-\frac{18}{24}+\frac{14}{24}\right):\frac{5}{6}+\frac{1}{2}\)
\(=\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)
\(=\frac{5}{24}.\frac{6}{5}+\frac{1}{2}\)
\(=\frac{1}{4}+\frac{1}{2}\)
\(=\frac{1}{4}+\frac{2}{4}\)
\(=\frac{3}{4}\)
\(\frac{1}{2}+\frac{3}{4}-\left(\frac{3}{4}-\frac{4}{5}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\left(\frac{15}{20}-\frac{16}{20}\right)\)
\(=\frac{1}{2}+\frac{3}{4}-\frac{-1}{20}\)
\(=\frac{10}{20}+\frac{15}{20}-\frac{-1}{20}\)
\(=\frac{25}{20}-\frac{-1}{20}\)
\(=\frac{26}{20}\)
\(=\frac{13}{10}\)
Bài 1:
Vì \(\frac{196}{197+198}< \frac{196}{197};\frac{197}{197+198}< \frac{197}{198}\)
Nên A = \(\frac{196}{197}+\frac{197}{198}>\frac{196}{197+198}+\frac{197}{197+198}=\frac{196+197}{197+198}=B\)
Vậy A > B
Đặt A= 200- (3+\(\frac{2}{3}+\frac{2}{4}+.....+\frac{2}{100}\))
=\(197-\frac{2}{3}-\frac{2}{4}-....-\frac{2}{100}\)
=\(\frac{197.2}{2}-\frac{2}{3}-\frac{2}{4}-....-\frac{2}{100}\)
=\(2.\left(\frac{196+1}{2}-\frac{1}{3}-\frac{1}{4}-.....-\frac{1}{100}\right)\)
=\(2\left(\frac{196}{2}+\frac{1}{2}-\frac{1}{3}-.....-\frac{1}{100}\right)\)
=\(2\left(98+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-.....-\frac{1}{100}\right)\)
=\(2\left(\frac{1}{2}+1-\frac{1}{3}+1-\frac{1}{4}+.....+1-\frac{1}{100}\right)\)
=\(2\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+.....+\frac{99}{100}\right)\)
Khi đó \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}}\)=\(\frac{2\left(\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}}\)=2(đpcm)
\(=\frac{1+2+3+...+100}{2\left(1+2+3+...+100\right)}=\frac{1}{2}\)
thang Tran làm đúng rồi l-i-k-e hộ mình cho thang Tran nha mọi người