Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6}=\frac{2x+1+3y-2-2x-3y+1}{5+7-6}=\frac{0}{6}=0\)
\(\Rightarrow2x+1=0\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2};\)
\(3y-2=0\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\)
Vậy \(x=-\frac{1}{2};y=\frac{2}{3}\)
Áp dụng tc cua dtsbn ta có
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\left(1\right)\)
\(\Rightarrow\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\Rightarrow6x=12\Rightarrow x=2\)
Thay vào 1 ta có:\(\frac{2.2+1}{5}=\frac{3y-2}{7}\Rightarrow1=\frac{3y-2}{7}\Rightarrow\frac{3y-2}{7}=1\)
\(\Rightarrow3y-2=7\Rightarrow3y=9\Rightarrow y=3\)
Vậy.....
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
\(\left|3-2x\right|+\left|4y+5\right|=0\)
Do \(\left|3-2x\right|\ge0;\left|4y+5\right|\ge0\Rightarrow\left|3-2x\right|+\left|4y+5\right|\ge0\)
Dấu "=" xảy ra khi \(x=\frac{2}{3};y=-\frac{5}{4}\)
Mấy bài khác tương tự
|x - y| + |y + 9/25| \(\le\)0
Ta có: |x - y| \(\ge\)0 \(\forall\)x,y
|y + 9/25| \(\ge\) 0 \(\forall\)y
=> |x - y| + |y + 9/25| \(\ge\)0 \(\forall\)x, y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\) => \(x=y=-\frac{9}{25}\)
Vậy ...
(x + y)2012 + 2013|y - 1| = 0
Ta có: (x + y)2012 \(\ge\)0 \(\forall\)x, y
2013|y - 1| \(\ge\)0 \(\forall\)y
=> (x + y)2012 + 2013|y - 1| \(\ge\)0 \(\forall\)x,y
Dấu "=" cảy ra khi : \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\) => \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy ...
Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà
c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1
<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006
<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0
=> x-2010=0 => x=2010
d, TH1 : cả hai cùng âm
=>> 2X-4 <O => X< 2
Và 9-3x<0 =>> x> 3
=>> loại
Th2 cả hai cùng dương
2x-4>O => x>2
Và 9-3x>O => x<3
=>> 2<x<3 (tm)
|1/2x| = 3 - 2x
ĐKXĐ : 3 - 2x \(\ge\)0 => 2x \(\ge\) 3 => x \(\ge\)3/2
Ta có: |1/2x| = 3 - 2x
=> \(\orbr{\begin{cases}\frac{1}{2}x=3-2x\\\frac{1}{2}x=-3+2x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{1}{2}x+2x=3\\\frac{1}{2}x-2x=-3\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=3\\-\frac{3}{2}x=-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{6}{5}\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
=> x = 2
|5x| = x - 12
ĐKXĐ : x - 12 \(\ge\)0 => x \(\ge\)12
Ta có: |5x| = x - 12
=> \(\orbr{\begin{cases}5x=x-12\\5x=-x+12\end{cases}}\)
=> \(\orbr{\begin{cases}5x-x=-12\\5x+x=12\end{cases}}\)
=> \(\orbr{\begin{cases}4x=-12\\6x=12\end{cases}}\)
=> \(\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)(ktm)
=> pt vô nghiệm
|2x - 5| = x + 1
ĐKXĐ: x + 1 \(\ge\)0 => x \(\ge\)-1
Ta có: |2x - 5| = x + 1
=> \(\orbr{\begin{cases}2x-5=x+1\\2x-5=-x-1\end{cases}}\)
=> \(\orbr{\begin{cases}2x-x=1+5\\2x+x=-1+5\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\3x=4\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=\frac{4}{3}\end{cases}}\)(tm)
Vậy ...
|7 - 2x| + 7 = 2x
=> |7 - 2x| = 2x - 7
ĐKXĐ: 2x - 7 \(\ge\)0 => 2x \(\ge\) 7 => x \(\ge\) 7/2
Ta có: |7 - 2x| = 2x - 7
=> \(\orbr{\begin{cases}7-2x=2x-7\\7-2x=7-2x\end{cases}}\)
=> 7 + 7 = 2x + 2x
hoặc x tùy ý (TMĐK)
=> 4x = 14 => x = 7/2
hoặc x tùy ý (Tm ĐK)
Vậy ...