\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

\(=\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)

\(=\frac{1}{2}4\sqrt{3}-2.5\sqrt{3}-\sqrt{3}+\frac{10}{\sqrt{3}}=-9\sqrt{3}+\frac{10}{\sqrt{3}}=\frac{-17\sqrt{3}}{3}\)

2 tháng 11 2017

\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)

=\(\frac{1}{2}\sqrt{3.4^2}-2\sqrt{3.5^2}-\sqrt{\frac{33}{11}}+5\sqrt{\frac{4}{3}}\)

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+10\sqrt{\frac{1}{3}}\)

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\frac{10}{3}\sqrt{3}\)

\(=\left(2-10-1+\frac{10}{3}\right)\sqrt{3}\)

\(=\frac{-17}{3}\sqrt{3}\)

\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5\sqrt{2\frac{2}{3}}-\sqrt{6}\)

\(=\sqrt{6.5^2}+\sqrt{96}+4,5\sqrt{\frac{8}{3}}-\sqrt{6}\)

\(=5\sqrt{6}+\sqrt{6.4^2}+4,5\frac{\sqrt{24}}{3}-\sqrt{6}\)

\(=5\sqrt{6}+4\sqrt{6}+\frac{4,5.2\sqrt{6}}{3}-\sqrt{6}\)

\(=8\sqrt{6}+3\sqrt{6}\)

\(=11\sqrt{6}\)

25 tháng 11 2020

Tự hòi tự trl :D ?

\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)

\(=\frac{1}{2}\sqrt{16.3}-2.5\sqrt{3}-\sqrt{3}-\frac{10}{3}\sqrt{3}\)

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}-\frac{10}{3}\sqrt{3}\)

\(=-9\sqrt{3}+\frac{10}{3}\sqrt{3}=\left(-9+\frac{10}{3}\right)\sqrt{3}\)

\(=-\frac{17}{3}\sqrt{3}\)

\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4,5.\sqrt{2\frac{2}{3}}-\sqrt{6}\)

\(=\sqrt{25.6}+\sqrt{1,6.60}+4,8\sqrt{\frac{8}{3}}-\sqrt{6}\)

\(=5\sqrt{6}+\sqrt{16.6}+4,5.\frac{1}{3}\sqrt{3^2.\frac{4.2}{3}}-\sqrt{6}\)

\(=9\sqrt{6}+3\sqrt{6}-\sqrt{6}=11\sqrt{6}\)

13 tháng 9 2018

Kết quả hình ảnh cho 1 2 √48−2√75− √33 √11 +5.√ 1 3

ks nhé

13 tháng 9 2018

\(=\frac{1}{2}\sqrt{16.3}-2\sqrt{25.3}-\frac{\sqrt{3.11}}{\sqrt{11}}+5\sqrt{\frac{1.3+1}{3}}\)

\(=\frac{1}{2}\sqrt{4^2.3}-2\sqrt{5^2.3}-\frac{\sqrt{3}.\sqrt{11}}{\sqrt{11}}+5\sqrt{\frac{4}{3}}\)

\(=\frac{1}{2}.4\sqrt{3}-2.5\sqrt{3}-\sqrt{3}+5\frac{\sqrt{4}}{\sqrt{3}}\)

\(=\frac{4}{2}\sqrt{3}-10\sqrt{3}-\sqrt{3}+5\frac{\sqrt{4}.\sqrt{4}}{\sqrt{3.}\sqrt{3}}\)

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+5\frac{2\sqrt{3}}{3}\)

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+10\frac{\sqrt{3}}{3}\)

\(=\left(2-10-1+\frac{10}{3}\right)\sqrt{3}\)

\(=-\frac{17}{3}\)

1) Ta có: \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)\left(1+\sqrt{2}\right)}{\left(\sqrt{2}+\sqrt{3}+2\right)}\)

\(=1+\sqrt{2}\)

2) Ta có: \(2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}\)

\(=\sqrt{108}-\sqrt{36\cdot\frac{4}{3}}+\sqrt{75\cdot\frac{9}{25}}\)

\(=\sqrt{108}-\sqrt{48}+\sqrt{27}\)

\(=\sqrt{3}\left(6-4+3\right)\)

\(=5\sqrt{3}\)

3) Sửa đề: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)

Ta có: \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{192}\)

\(=\sqrt{2}\cdot\sqrt{4}\cdot\sqrt{3}-10\sqrt{4}\cdot\sqrt{3}+16\cdot\sqrt{4}\cdot\sqrt{3}\)

\(=\sqrt{2}\cdot\sqrt{12}-10\sqrt{12}+16\sqrt{12}\)

\(=\sqrt{12}\left(\sqrt{2}-10+16\right)\)

\(=2\sqrt{3}\left(\sqrt{2}-6\right)\)

\(=2\sqrt{6}-12\sqrt{3}\)

4) Ta có: \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

\(=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{\sqrt{12}}{6}-\frac{2\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)

\(=\frac{6\left(2-\sqrt{3}\right)+2\sqrt{3}-6+2\sqrt{3}}{6}\)

\(=\frac{12-6\sqrt{3}+2\sqrt{3}-6+2\sqrt{3}}{6}\)

\(=\frac{6-2\sqrt{3}}{6}\)

\(=\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{2\sqrt{3}\cdot\sqrt{3}}\)

\(=\frac{\sqrt{3}-1}{\sqrt{3}}\)

5) Ta có: \(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)

\(=\frac{\sqrt{3}\left(2+5+3\right)}{\sqrt{15}}=\frac{10}{\sqrt{5}}=2\sqrt{5}\)

6) Ta có: \(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)

\(=\sqrt{48\cdot\frac{1}{4}}-\sqrt{75\cdot4}-\sqrt{3}+5\sqrt{\frac{4}{3}}\)

\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{25\cdot\frac{4}{3}}\)

\(=\sqrt{12}-\sqrt{300}-\sqrt{3}+\sqrt{\frac{100}{3}}\)

\(=\sqrt{3}\left(2-10-1+\frac{10}{3}\right)\)

\(=-\frac{17\sqrt{3}}{3}=-\frac{17}{\sqrt{3}}\)

5 tháng 6 2019

\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{\frac{4}{3}}\)

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\frac{10\sqrt{3}}{3}\)

\(=-9\sqrt{3}+\frac{10\sqrt{3}}{3}\)

\(=\frac{-27\sqrt{3}}{3}+\frac{10\sqrt{3}}{3}\)

\(=\frac{-17\sqrt{3}}{3}\)

\(\frac{1-a\sqrt{a}}{1-\sqrt{a}}\) \(=\frac{1^3-\left(\sqrt{a}\right)^3}{1-\sqrt{a}}\)

                            \(=\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}\)

                            \(=a+\sqrt{a}+1\)

chúc bn học tốt

5 tháng 6 2019

\(\frac{1-a\sqrt{a}}{1-\sqrt{a}}\)

\(=\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}\)

\(=a+\sqrt{a}+1\)

9 tháng 10 2017

1) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}\)

\(=2\sqrt{5}-\sqrt{5^2.5}-\sqrt{4^2.5}+\sqrt{11^2.5}\)

\(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}\)

\(=4\sqrt{5}\)

2) \(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-\sqrt{6^2.6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-6\sqrt{6}+3^2}+\sqrt{\left(2\sqrt{6}\right)^2-12\sqrt{6}+3^2}\)

\(=\sqrt{\left(\sqrt{6}-3\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|\sqrt{6}-3\right|+\left|2\sqrt{6}-3\right|\)

\(=3-\sqrt{6}+2\sqrt{6}-3\)  ( vi \(\sqrt{6}-3< 0\))

\(=\sqrt{6}\)

5) \(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)

\(=2\frac{4}{\sqrt{3}}-3.\frac{1}{3}-6\sqrt{\frac{2^2}{3.5^2}}\)

\(=\frac{8\sqrt{3}}{3}-1-6.\frac{2}{5}.\sqrt{\frac{1}{3}}\)

\(=8\frac{\sqrt{3}}{3}-1-\frac{12}{5}.\frac{\sqrt{3}}{3}\)

\(=\frac{28}{5}.\frac{\sqrt{3}}{3}-1\)

7 tháng 8 2018

 Báo cáo sai phạm

1) 2√5−√125−√80+√605

=2√5−√52.5−√42.5+√112.5

=2√5−5√5−4√5+11√5

=4√5

2) √15−√216+√33−12√6

=√15−√62.6+√33−12√6

=√15−6√6+√33−12√6

=√(√6)2−6√6+32+√(2√6)2−12√6+32

=√(√6−3)2+√(2√6−3)2

=|√6−3|+|2√6−3|

=3−√6+2√6−3  ( vi √6−3<0)

=√6

5) 2√163 −3√127 −6√475 

=24√3 −3.13 −6√223.52 

=8√33 −1−6.25 .√13 

=8√33 −1−125 .√33 

=285 .√33 −1

27 tháng 8 2019

a)\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}=5\sqrt{3}-\frac{\sqrt{15}}{3}+3\sqrt{3}+6\sqrt{3}=14\sqrt{3}-\frac{\sqrt{15}}{3}\)

b) \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}=4\sqrt{3}+\frac{\sqrt{15}}{3}+10\sqrt{3}-\frac{5\sqrt{3}}{3}=\frac{12\sqrt{3}+30\sqrt{3}-5\sqrt{3}}{3}+\frac{\sqrt{15}}{3}=\frac{37\sqrt{3}+\sqrt{15}}{3}\)

c) \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}=\left[\left(\sqrt{15}\right)^2+4\sqrt{45}+\left(2\sqrt{3}\right)^2\right]+12\sqrt{5}=15+12\sqrt{5}+12+12\sqrt{5}=27+24\sqrt{5}\)

d) \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{18}-\sqrt{12}+\sqrt{6}-2\sqrt{2}=3\sqrt{2}-2\sqrt{3}+\sqrt{6}-2\sqrt{2}=\sqrt{2}-2\sqrt{3}+\sqrt{6}\)

e) \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4=\left(\sqrt{3}\right)^2+2\sqrt{3}+1-2\sqrt{3}+4=3+2\sqrt{3}+1-2\sqrt{3}+4=8\)

f) \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{1}=14\)

g) \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}=\left(\frac{\sqrt{5}+2-\sqrt{5}+2+5-2}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\right)\frac{1}{3+2\sqrt{2}}=\frac{7}{3}.\frac{1}{3+2\sqrt{2}}=\frac{7}{9+6\sqrt{2}}\)