\(\frac{1}{2}\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)...........\left(1+\frac{1}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

Cậu có thể vào đây tham khảo : http://h.vn/hoi-dap/question/119685.html

chịu thôi bạn ạ ko hiểu gì hết 

1 tháng 11 2019

\(B=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n.\left(n+2\right)}\right)\)

\(=\left(\frac{1.3+1}{1.3}\right).\left(\frac{2.4+1}{2.4}\right).\left(\frac{3.5+1}{3.5}\right)...\left(\frac{n.\left(n+2\right)+1}{n.\left(n+2\right)}\right)\)

\(=\left(\frac{2^2}{1.3}\right).\left(\frac{3^2}{2.4}\right).\left(\frac{4^2}{3.5}\right)...\left(\frac{\left(n+1\right)^2}{n.\left(n+2\right)}\right)\)

\(=\frac{2.3.4...\left(n+1\right)}{1.2.3...n}.\frac{2.3.4...\left(n+1\right)}{3.4.5...\left(n+2\right)}\)

\(=\frac{\left(n+1\right)}{1}.\frac{2}{\left(n+2\right)}\)

\(=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}=2.\frac{n+1}{n+2}< 2\)(vì \(\frac{n+1}{n+2}< 1\))

Vậy B < 2

19 tháng 9 2019

Ta có:

\(1+\frac{1}{1.3}=\frac{4}{1.3}=\frac{2^2}{1.3}\)

\(1+\frac{1}{2.4}=\frac{9}{2.4}=\frac{3^2}{2.4}\)

\(1+\frac{1}{3.5}=\frac{16}{3.5}=\frac{4^2}{3.5}\)

...

\(1+\frac{1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

=>

\(B=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2^2.3^2.4^2...\left(n+1\right)^2}{1.2.3^2.4^2...\left(n+1\right)\left(n+2\right)}=\frac{2.\left(n+1\right)}{1.\left(n+2\right)}\)

\(=\frac{2\left(n+2\right)-2}{n+2}=2-\frac{2}{n+2}< 2\)

Vậy B < 2 

15 tháng 6 2015

=> \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)

<=> \(\frac{2^2.3^2...n^2}{1.3.2.4....\left(n-1\right).\left(n+1\right)}=\frac{2015}{1008}\)

<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4...n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4.5...\left(n+1\right)\right)}=\frac{2015}{1008}\)

<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)

=> 1008.2n = 2015.(n+1)

<=> 2016n = 2015n + 2015

<=> n = 2015

*) Bạn hỏi câu này một lần rồi!!!

15 tháng 6 2015

nhung hinh nhu ban lam sai de roi thi phai

 

11 tháng 6 2015

<=>  \(\frac{4}{1.3}.\frac{9}{2.4}...\frac{n^2}{\left(n-1\right)\left(n+1\right)}=\frac{2015}{1008}\)

<=> \(\frac{\left(2.3.4....n\right)^2}{\left(1.2.3...\left(n-1\right)\right).\left(3.4...\left(n+1\right)\right)}=\frac{2015}{1008}\)

<=> \(\frac{\left(2.3.4....n\right).\left(2.3.4....n\right)}{\left(1.2.3...\left(n-1\right)\right).\left(3.4...\left(n+1\right)\right)}=\frac{2015}{1008}\)

<=> \(\frac{n.2}{n+1}=\frac{2015}{1008}\)

<=> 2n.1008 = 2015.(n+1)

<=> 2016n = 2015n + 2015 

<=> n = 2015

11 tháng 6 2015

\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}=\left(1+\frac{1}{1.3}+\frac{1}{2.4}\right)=2.185897436\)

15 tháng 6 2015

bạn kiểm tra lại đề nhé! vì số hạng tổng quát chẳng liên quan gì đến số hạng đầu

Có thể đề đúng là: \(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)....\left(1+\frac{1}{\left(n-1\right)\left(n+1\right)}\right)=1\frac{1007}{1008}\)

Tính ra A là 2-(1/2)^2013. Phần còn lại thì quá dễ r 

(Để tính A từ dãy trên ta nhân 2 lên thành 2A. Rồi lấy 2A-A=A=...)

11 tháng 11 2018

\(A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+..............+\left(\frac{1}{2}\right)^{2013}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+.......+\left(\frac{1}{2}\right)^{2013}\Rightarrow2A-A=A=2-\left(\frac{1}{2}\right)^{2013}\)

\(VI:A+\left(\frac{1}{2}\right)^n=2\Rightarrow n=2013\)