Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{98}{2}+1+\frac{97}{3}+1+.....+\frac{2}{98}+1+\frac{1}{99}+1+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}}=\frac{\frac{100}{2}+\frac{100}{3}+........+\frac{100}{98}+\frac{100}{99}+\frac{100}{100}}{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{99}+\frac{1}{100}}\)
\(=\frac{100\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}{\left(\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)}=100\)
\(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)++...+\left(1+\frac{98}{2}\right)1}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)
\(=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}}{100\times\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)}\)
\(=\frac{1}{100}\)
Quên mất, bảo tối hôm đó vào làm :)). May là sang nay có ng k ms vào xem. Sorry
S=\(\frac{92-\left(1-\frac{8}{9}\right)-\left(1-\frac{8}{10}\right)-..-\left(1-\frac{8}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}=\frac{92-92+\left(\frac{8}{9}+\frac{8}{10}+...+\frac{8}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}\)
=\(\frac{8\left(\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}\right)}{\frac{1}{5}\left(\frac{1}{9}+\frac{1}{10}+....+\frac{1}{100}\right)}=\frac{8}{\frac{1}{5}}=\frac{8.5}{1}=40\)
Vậy S=40
Ta có:
\(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
...
\(\frac{1}{99}>\frac{1}{100}\)
\(\frac{1}{100}=\frac{1}{100}\)
=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)
Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)
=> S \(>\frac{1}{100}.50\)
=> S \(>\frac{1}{2}\)
Vậy S > 1/2.
\(\frac{1}{1+2}\)+ \(\frac{1}{1+2+3}\)+ \(\frac{1}{1+2+3+4}\)+ ....+ \(\frac{1}{1+2+3+4+...+99+100}\)= ?
= \(\frac{1}{3}\)+ \(\frac{1}{6}\)+ \(\frac{1}{10}\)+...+ \(\frac{1}{5050}\)
= (\(\frac{1}{3}+\frac{1}{5050}\)) x \(\frac{2}{1}\)
= \(\frac{5050}{15150}\)+ \(\frac{3}{15150}\)x \(\frac{2}{1}\)
= \(\frac{5053}{15150}\)x \(\frac{2}{1}\)
= \(\frac{10106}{15150}\)
Vậy tổng là: \(\frac{10106}{15150}\)
k nha!Khó lắm đó mới giải được
Xin lỗi bạn! Đáp án là bằng một vì dượng mình có chỉ nhưng dượng không chỉ mình cách giải.
Gọi nhiệt độ cần tìm là x. Ta có :
xoC = xoF
=> x . 1,8 + 32 = x
=> x . (1 + 0,8) = x - 32
=> x + 0,8x = x - 32
=> 0,8x = -32
=> x = -32 : 0,8 = -40
Vậy tại nhiệt độ -40oF thì số đọc trên nhiệt giai Fa-ren-hai bằng số đọc trên nhiệt giai Xen-xi-út.
ko bt dung ko
minh nham