K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

Sai đề rồi bạn. Phải là thế này chứ:

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

3 tháng 5 2018

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{100}=\frac{1}{6}+\frac{1}{2}-\frac{1}{100}=\frac{197}{300}\)

20 tháng 8 2016

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{99.100}\\ =\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+.........+\left(\frac{1}{99}-\frac{1}{100}\right)\\ =\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+......+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\\ =\frac{49}{100}\)

20 tháng 8 2016

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+...+\frac{1}{99}.\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

19 tháng 2 2017

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)

19 tháng 2 2017

k=2

chuan 100%ok

27 tháng 6 2015

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)

\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Rightarrow k=2\)

26 tháng 5 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

26 tháng 5 2017

Giải 

A=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100

=1-1/100=99/100

Chú thích:1/2 là 1 phần 2

25 tháng 4 2019

\(A=\frac{2.2}{1.3}.\frac{3.3}{2.4}....\frac{99.99}{98.100}\)

\(A=\left(\frac{2.3....99}{1.2....98}\right).\left(\frac{2.3....99}{3.4....100}\right)\)

\(A=\frac{99}{1}.\frac{2}{100}\)

\(A=\frac{198}{100}\)

19 tháng 4 2015

A = \(\frac{\left(1.2.3......99\right)\left(1.2.3......99\right)}{\left(1.2.3......99\right)\left(2.3.4.....100\right)}=\frac{1.1}{1.100}=\frac{1}{100}\)

28 tháng 1 2019

\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{1}{1.2}-\frac{1}{99.100}\right).y=\frac{49}{100}\Leftrightarrow\left(\frac{99.50-1}{99.100}\right).y=\frac{49}{100}\)

\(\Leftrightarrow\left(\frac{99.50-1}{99}\right).y=49\Leftrightarrow\left(99.50-1\right).y=99.49\Rightarrow y=\frac{99.49}{99.50-1}\)

11 tháng 5 2020

ảnh đại diện đẹp thế lấy ở đâu

4 tháng 4 2017

A=1/100

4 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)