Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)
Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :
\(\Rightarrow\) \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)
Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)
1/4+2/5+6/8+2/15+6/7
=(1/4+6/8)+(2/5+2/15)+6/7
=(2/8+6/8)+(6/15+2/15)+6/7
=1+8/15+6/7
=1+56/105+90/105
=1+146/105
=1+105/105+41/105
=1+1+41/105
=2+41/105
=2 và 41/105
2 và 41/105 là hỗn số nha
1/4+2/5+6/8+2/15+6/7
Ta có:
1/4=1-3/4
6/8=3/4
2/15=2/3*5=1/3-1/5
==> 1-3/4+2/5+3/4+1/3-1/5+6/7
=1+1/3+1/5+6/7
=(105+35+21+90)/105
=251/105.
cứ mỗi p/số kia bé hơn:1+1/1.2+1/2.3+1/3.4+....+1/49.50
phân phối ra nhé còn:2-1/50
mà 1/50>0
=>A<2
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\)
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{1.1}+\frac{1}{1.2}+....+\frac{1}{49.50}\)
A=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}<2=\frac{2}{1}\)
A=\(\frac{49}{50}<\frac{2}{1}=\frac{49}{50}<\frac{100}{50}\)
Vậy A<2 hay\(\frac{49}{50}<2\)
Ta co :
E=\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{201}{2}\)
=\(\frac{2+3+4+5+...+201}{2}\)
=\(\frac{\left[\left(201+2\right)\left(201-2\right):1+1\right]:2}{2}\)
=\(\frac{40398:2}{2}\)
=\(\frac{20199}{2}\)
Đúng thì k không thì giúp tớ với
a) \(\frac{1}{x}+\frac{y}{6}=\frac{1}{2}\)
\(\frac{1}{x}=\frac{1}{2}-\frac{y}{6}\)
\(\frac{1}{x}=\frac{3}{6}-\frac{y}{6}\)
\(\frac{1}{x}=\frac{3-y}{6}\)
\(\Rightarrow6=x.\left(3-y\right)\)
Lập bảng ta có :
3-y | 2 | 3 | -2 | -3 | 1 | 6 | -1 | -6 |
x | 3 | 2 | -3 | -2 | 6 | 1 | -6 | -1 |
y | 1 | 0 | 5 | 6 | 2 | -3 | 4 | 9 |
Vậy ...
b) tương tự câu a
c) \(\frac{x-1}{9}+\frac{1}{3}=\frac{1}{y+2}\)
\(\frac{x-1}{9}+\frac{3}{9}=\frac{1}{y+2}\)
\(\frac{x+2}{9}=\frac{1}{y+2}\)
\(\Rightarrow\left(x+2\right).\left(y+2\right)=9\)
x+2 | 3 | -3 | 1 | 9 | -1 | -9 |
y+2 | 3 | -3 | 9 | 1 | -9 | -1 |
x | 1 | -5 | -1 | 7 | -3 | -11 |
y | 1 | -5 | 7 | -1 | -11 | -3 |
Vậy ...
d) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)
\(\frac{4}{y}=\frac{x}{3}-\frac{1}{5}\)
\(\frac{4}{y}=\frac{5x}{15}-\frac{3}{15}\)
\(\frac{4}{y}=\frac{5x-3}{15}\)
\(\Rightarrow4.15=y.\left(5x-3\right)\)
\(\Rightarrow60=y.\left(5x-3\right)\)
Lập bảng ta có :
nhiều tự làm