\(\frac{1}{2.4.6}+\frac{1}{4.6.8}+...+\frac{1}{96.98.100}\)

\(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2017

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)

Vì \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};..;\frac{1}{50.50}< \frac{1}{49.50}\)nên :

\(\Rightarrow\)  \(1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)

Ta có : \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=1+\left(1-\frac{1}{50}\right)\)\(=1+\frac{49}{50}\)

Vì \(\frac{49}{50}< 1\)nên \(1+\frac{49}{50}< 2\)\(\Rightarrow\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

\(\Rightarrow\)\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}< 2\)

         

18 tháng 10 2017

1/4+2/5+6/8+2/15+6/7

=(1/4+6/8)+(2/5+2/15)+6/7

=(2/8+6/8)+(6/15+2/15)+6/7

=1+8/15+6/7

=1+56/105+90/105

=1+146/105

=1+105/105+41/105

=1+1+41/105

=2+41/105

=2 và 41/105

2 và 41/105 là hỗn số nha

18 tháng 10 2017

1/4+2/5+6/8+2/15+6/7

Ta có:

1/4=1-3/4

6/8=3/4

2/15=2/3*5=1/3-1/5

==> 1-3/4+2/5+3/4+1/3-1/5+6/7 

=1+1/3+1/5+6/7

=(105+35+21+90)/105

=251/105.

7 tháng 4 2016

cứ mỗi p/số kia bé hơn:1+1/1.2+1/2.3+1/3.4+....+1/49.50

phân phối ra nhé còn:2-1/50

mà 1/50>0

=>A<2

7 tháng 4 2016

A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{50^2}\)

A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<\frac{1}{1.1}+\frac{1}{1.2}+....+\frac{1}{49.50}\)

A=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}<2=\frac{2}{1}\)

A=\(\frac{49}{50}<\frac{2}{1}=\frac{49}{50}<\frac{100}{50}\)

Vậy A<2 hay\(\frac{49}{50}<2\)

9 tháng 4 2017

Ta co :

E=\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{201}{2}\)

   =\(\frac{2+3+4+5+...+201}{2}\)

   =\(\frac{\left[\left(201+2\right)\left(201-2\right):1+1\right]:2}{2}\)

   =\(\frac{40398:2}{2}\)

=\(\frac{20199}{2}\)

Đúng thì k không thì giúp tớ với 

9 tháng 4 2017

kết quả ra sai rồi

\(E=\frac{2+3+4+...+201}{2}=\frac{\frac{\left[\left(201-2\right):1+1\right].\left(201+2\right)}{2}}{2}=\frac{\frac{200.203}{2}}{2}=\frac{100.203}{2}\)=10150

8 tháng 6 2017

2/3.1/3+1/2

=1/2+1/2

=2/2

=1

8 tháng 6 2017

=1/2+1/2=1

14 tháng 6 2017

a) \(\frac{1}{x}+\frac{y}{6}=\frac{1}{2}\)

\(\frac{1}{x}=\frac{1}{2}-\frac{y}{6}\)

\(\frac{1}{x}=\frac{3}{6}-\frac{y}{6}\)

\(\frac{1}{x}=\frac{3-y}{6}\)

\(\Rightarrow6=x.\left(3-y\right)\)

Lập bảng ta có :

3-y23-2-316-1-6
x32-3-261-6-1
y10562-349

Vậy ...

b) tương tự câu a

c) \(\frac{x-1}{9}+\frac{1}{3}=\frac{1}{y+2}\)

\(\frac{x-1}{9}+\frac{3}{9}=\frac{1}{y+2}\)

\(\frac{x+2}{9}=\frac{1}{y+2}\)

\(\Rightarrow\left(x+2\right).\left(y+2\right)=9\)

x+23-319-1-9
y+23-391-9-1
x1-5-17-3-11
y1-57-1-11-3

Vậy ...

d) \(\frac{x}{3}-\frac{4}{y}=\frac{1}{5}\)

\(\frac{4}{y}=\frac{x}{3}-\frac{1}{5}\)

\(\frac{4}{y}=\frac{5x}{15}-\frac{3}{15}\)

\(\frac{4}{y}=\frac{5x-3}{15}\)

\(\Rightarrow4.15=y.\left(5x-3\right)\)

\(\Rightarrow60=y.\left(5x-3\right)\)

Lập bảng ta có :

nhiều tự làm