K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2016

Ta có :

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}=\frac{9}{10}<\frac{10}{10}=1\)

7 tháng 3 2016

Có : \(\frac{1}{2^2}<1\)

\(\frac{1}{3^2}<1\)

\(\frac{1}{4^2}<1\)

...

\(\frac{1}{10^2}<1\)

Cộng tất cả các vế trên ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}<1\) (ĐPCM)

22 tháng 2 2016

lồnucche

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(=\frac{1}{4}+\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Đặt \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(B=\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}\right)+\left(\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Giả sử tất cả các số hạng của B đều bằng \(\frac{1}{6^2}\)

\(\Rightarrow B=6.\frac{1}{6^2}=\frac{6}{36}=\frac{1}{6}<\frac{1}{4}\)

Do đó \(B<\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{4}+B<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

Vậy \(A<\frac{1}{2}\)

 

24 tháng 1 2016

\(\frac{1\left(21\right)\left(321\right)\left(4321\right)....}{1\left(12\right)\left(123\right)\left(1234\right)....}\)

24 tháng 1 2016

thế này thì tìm đến bao giờ

19 tháng 4 2016

Ta có : \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)

Mà \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{8^2}<\frac{1}{7.8}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}<1\)

Vậy B < 1

26 tháng 4 2016

Bạn xem lời giải của mình nhé:

Giải:

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}+\frac{1}{7.8}\\\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8} \\ =\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=1-\frac{1}{8}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< 1\)

Chúc bạn học tốt!hihi

26 tháng 4 2016

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{7.8}\)

                                          = \(1-\frac{1}{8}< 1\)

Vậy B < 1

30 tháng 3 2016

B=3/2 xin loi nhahiuvì cách trình bày trên này khó quá, đọc chắc bạn ko hiểu đâu

30 tháng 3 2016

cu trình bày đi, mink tick cho

22 tháng 3 2016

Ta có:

\(A=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)

\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(\Rightarrow2B=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(\Rightarrow2B-B=B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(=1-\frac{1}{2^{10}}\)

\(\Rightarrow A=1-\left(1-\frac{1}{2^{10}}\right)=1-1+\frac{1}{2^{10}}=\frac{1}{2^{10}}\)

Vậy \(A=\frac{1}{2^{10}}\)

22 tháng 3 2016

no

19 tháng 3 2016

a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)

=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\) 

=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.

b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\) 

=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)

=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)

Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) 

=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)

=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)

=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.

 

 

Ta thấy: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{49.50}\)

               \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)

               \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(1-\frac{1}{50}\)

Suy ra:

A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1^2}+\left(1-\frac{1}{50}\right)\)

                               A<1+1-\(\frac{1}{50}\)

                               A<2-\(\frac{1}{50}\)<2

             Vậy A<2(đpcm)

                              

17 tháng 4 2016

em viết sai 

chứng minh A < 2

10 tháng 7 2019

\(Q=\frac{2\cdot2010}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2012}}\)

\(Q=\frac{2\cdot2010}{1+\frac{1}{\frac{(1+2)\cdot2}{2}}+\frac{1}{\frac{(1+3)\cdot3}{2}}+\frac{1}{\frac{(1+4)\cdot4}{2}}+...+\frac{1}{\frac{(1+2012)\cdot2012}{2}}}\)

\(Q=\frac{2\cdot2010}{1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2025078}}\)

\(Q=\frac{2\cdot2010}{1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}...+\frac{2}{4050156}}\)

\(Q=\frac{2\cdot2010}{1+\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}+...+\frac{2}{2012\cdot2013}}\)

\(Q=\frac{2\cdot2010}{1+2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right]}\)

\(Q=\frac{2\cdot2010}{1+2\left[\frac{1}{2}-\frac{1}{2013}\right]}=\frac{2\cdot2010}{1+\frac{2011}{2013}}=\frac{2\cdot2010}{\frac{4024}{2013}}=\frac{4020}{\frac{4024}{2013}}=4020\cdot\frac{2013}{4024}=...\)

Nguyễn Linh Chi ơi , hình như cô nhầm thì phải :v \(2-\frac{2}{2013}=\frac{2\cdot2013-2}{2013}=\frac{4026-2}{2013}=\frac{4024}{2013}\)

sao mà bằng \(\frac{4020}{2013}\)được cô

10 tháng 7 2019

Ta có: 

\(P=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\)

\(P=1+\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+3\right).3}{2}}+...+\frac{1}{\frac{\left(1+2012\right).2012}{2}}\)

\(P=1+\frac{2}{3.2}+\frac{2}{4.3}+...+\frac{2}{2013.2012}\)

\(P=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)\

\(P=1+2\left(\frac{1}{2}-\frac{1}{2013}\right)\)

\(P=1+1-\frac{2}{2013}=2-\frac{2}{2013}=\frac{4020}{2013}\)

\(Q=\frac{2.2010}{P}=\frac{4020}{\frac{4020}{2013}}=2013\)....