Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta xét : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(n+1\right)-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)< 2\sqrt{n+1}-2\)
- Ta xét : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)< 2\sqrt{n}\) ;
Hình như bạn chép sai đề , phải là dấu " < " chứ . Đây tớ CM này :
ta có:\(\sqrt{t}+\sqrt{t+1}< 2\sqrt{t+1}\)
\(\Leftrightarrow\frac{1}{\sqrt{t+1}-\sqrt{t}}< 2\sqrt{t+1}\Leftrightarrow\frac{\sqrt{t+1}}{2\left(\sqrt{t+1}-\sqrt{t}\right)}< t+1\)
\(\Leftrightarrow\frac{1}{\left(t+1\right)\sqrt{t}}< \frac{2\left(\sqrt{t+1}-\sqrt{t}\right)}{\sqrt{t+1}\sqrt{t}}=2\left(\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{t+1}}\right)\)
Thế vào phương trình trên , ta có : \(\frac{1}{1\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{n\sqrt{n+1}}< \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) \(=\)\(1-\frac{1}{\sqrt{n+1}}\)
Đó rõ ràng là < (+_+)
mk nhầm chút ,đoạn cuối phải là \(\le2\left(1-\frac{1}{\sqrt{n+1}}\right)\)
A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)
\(< \sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow N< 2\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\right)\)
\(\Rightarrow N< 2\left(1-\frac{1}{\sqrt{2012}}\right)< 2\)