K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

Ta xét 2 phân thức \(\frac{a^2}{a^2-100a+5000}\)và \(\frac{\left(100-a\right)^2}{\left(100-a\right)^2-100\left(100-a\right)+5000}\)(với \(a\in N\)và \(1\le a\le99\)).

Xét hiệu 2 mẫu: \(a^2-100a+5000-\left(100-a\right)^2+100\left(100-a\right)-5000\)

\(=a^2-100a-100^2+200a-a^2+100^2-100a=0.\)

Do đó 2 mẫu bằng nhau và \(\frac{a^2}{a^2-100a+5000}+\frac{\left(100-a\right)^2}{\left(100-a\right)^2-100\left(100-a\right)+5000}\)

\(=\frac{a^2+\left(100-a\right)^2}{a^2-100a+5000}=\frac{2a^2-200a+100^2}{a^2-100a+5000}=2\)

Thay a = 1, 2, 3, ..., 49 ta có:

\(\left(\frac{1^2}{1^2-100+5000}+\frac{99^2}{99^2-9900+5000}\right)+\left(\frac{2^2}{2^2-200+5000}+\frac{98^2}{98^2-9800+5000}\right)+...+\left(\frac{49^2}{49^2-4900+5000}+\frac{51^2}{51^2-5100+5000}\right)+\frac{50^2}{50^2-5000+5000}\)

\(=2.49+1=99\)

3 tháng 8 2016

lấy cái tên NARUTO ở đâu mà hay ghê (ở trong BB phải ko)