\(\frac{1}{2011}.x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

\(\frac{1}{2011}.x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2010}\right).\left(1-\frac{1}{2011}\right)\)

\(\frac{1}{2011}.x=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{2009}{2010}.\frac{2010}{2011}\)

\(\frac{1}{2011}.x=\frac{1.2.3...2009.2010}{2.3.4...2010.2011}\)\(=\frac{1}{2011}\)

\(x=\frac{1}{2011}:\frac{1}{2011}=1\)

Vậy x=1

6 tháng 5 2017

\(\frac{1}{2011}.x=\frac{1}{2}.\left(\frac{2}{3}\right).\left(\frac{3}{4}\right)......\left(\frac{2010}{2011}\right)\)

\(\frac{1}{2011}.x=\frac{2}{4}.\left(\frac{4}{6}\right).\left(\frac{6}{8}\right).......\left(\frac{4018}{4020}\right).\left(\frac{4020}{4022}\right)\)

\(\frac{1}{2011}.x=\frac{2.4.6.8.....4018.4020}{4.6.8.10.....4020.4022}\)

\(\frac{1}{2011}.x=\frac{2}{4022}\)

\(\Rightarrow\)\(x=\frac{2}{4022}:\frac{1}{2011}=1\)

Ai thấy đún thì ủng hộ mink nha !!!

Thanks you very much !!

Chúc các bạn luôn học giỏi !!!

28 tháng 10 2019

a)\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{20}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}\)

\(A=\frac{1.2.3...19}{2.3.4...20}\)

\(A=\frac{1}{20}\)

18 tháng 4 2018

Suy ra : A = ( 1 - 1 / 2010 ) . ( 1 - 2 / 2010 ) .... 0 . ( 1 - 2011 / 2010 ) = 0 

Suy ra A = 0

18 tháng 4 2018

A = 1. ( 1/2010 + 2/2010 ) - ( 3/2010 + 4/2010 ) - ... - ( 2010/2010 + 2011/2010 )

= 1/2010 - 2011/2010

= -2010/2010

trong dãy tích A sẽ có phân số \(1-\frac{2010}{2010}=1-1=0\)

=>A=0

27 tháng 4 2016

\(A=\frac{ }{ }sdadsad\text{đ}\text{s}gh\text{d}fg\text{d}\)sf

23 tháng 7 2018

\(\left(1-\frac{1}{35}\right)\left(1-\frac{1}{36}\right)\left(1-\frac{1}{37}\right)...\left(1-\frac{1}{2010}\right)\left(1-\frac{1}{2011}\right)\)

\(=\frac{34}{35}.\frac{35}{36}.\frac{36}{37}.....\frac{2009}{2010}.\frac{2010}{2011}\)

\(=\frac{34}{2011}\)

\(\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}+\frac{109}{110}+\frac{131}{132}+\frac{155}{156}\)

\(=1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}+1-\frac{1}{110}+1-\frac{1}{132}+1-\frac{1}{156}\)

\(=7-\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}\right)\)

\(=7-\left(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}\right)\)

\(=7-\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{12}-\frac{1}{13}\right)\)

\(7-\left(\frac{1}{6}-\frac{1}{13}\right)=6\frac{71}{78}\)

NV
5 tháng 7 2020

\(\frac{1+2+...+n}{n}=\frac{n\left(n+1\right)}{2n}=\frac{n+1}{2}\)

\(\Rightarrow A=1+\frac{1}{2}\left(3+4+...+2012\right)\)

\(=1+\frac{1}{2}\left(1+2+...+2012-3\right)\)

\(=1+\frac{1}{2}\left(1+2+...+2012\right)-\frac{3}{2}\)

\(=\frac{1}{2}.\frac{2012.2013}{2}-\frac{1}{2}=503.2013-\frac{1}{2}=...\)

5 tháng 7 2020

1)503x2013
hay
2)503,2013

hả bạn nó là nhân hay phẩy

17 tháng 5 2019

C=(1+2/3).(1+2/5).(1+2/7)......(1+2/2009).(1+2/2011)

C=5/3.7/5.9/7......2011/2009.2013/2011

C=5.7.9.....2013/3.5.7.....2009.2011

C=2013/3