Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1999/2000
B=199/200
C=511/512
hok tốt
Đáp án
mình lười trình bày cách làm lém, để đáp án thui nha
A = \(\frac{1999}{2000}\)
B = \(\frac{199}{200}\)
C = \(\frac{511}{512}\)
Gọi biểu thức trên là A
Ta có :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}+\frac{1}{256}-\frac{1}{256}\)
\(2A=1+A-\frac{1}{256}\)
\(2A=A+1-\frac{1}{256}\)
\(2A-A=\frac{255}{256}\)
\(A=\frac{255}{256}\)
Gọi \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\)
\(2A-A=\left[1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^7}\right]-\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right]\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^8}\)
\(A=1-\frac{1}{2^8}=1-\frac{1}{256}=\frac{255}{256}\)
\(\frac{10}{18}+\frac{4}{9}+\frac{26}{10}+\frac{12}{5}+\frac{9}{15}\)
\(=\frac{5}{9}+\frac{4}{9}+\frac{13}{5}+\frac{12}{5}+\frac{3}{5}\)
\(=\left(\frac{5}{9}+\frac{4}{9}\right)+\left(\frac{13}{5}+\frac{12}{5}+\frac{3}{5}\right)\)
\(=1+\frac{28}{5}\)
\(=\frac{33}{5}\)
Ta có:
a) \(\frac{10}{18}+\frac{4}{9}+\frac{26}{10}+\frac{12}{5}+\frac{9}{15}=\frac{5}{9}+\frac{4}{9}+\frac{13}{5}+\frac{12}{5}+\frac{9}{15}=1+1+\frac{9}{15}=1\frac{9}{15}\)
b)\(\frac{10}{18}+\frac{4}{9}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}=\left(\frac{5}{9}+\frac{4}{9}\right)+\left(\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\right)\)
\(=1+\frac{31}{128}=1\frac{31}{128}\)
Cách 1:
B=1/2+1/4+1/8+1/16+1/32+1/64
B=1-1/2 + 1/2-1/4 + 1/4-1/8 +1/8-1/16 + 1/16-1/32 + 1/32-1/64
B=1-1/64
B=63/64
Cách 2:
B=1/2+1/4+1/8+1/16+1/32+1/64
B=1/21+1/22+1/23+1/24+1/25+1/26
2B=1+1/21+1/2^2+1/2^3+1/2^4+1/2^5
2B-B=1-1/2^6
B=1-1/64
B=63/64
Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32
2A - A = (1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32) - (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64)
A = 1 - 1/64
A = 63/64
Đặt :
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\Leftrightarrow\)\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Leftrightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)
\(\Leftrightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(\Leftrightarrow\)\(A=1-\frac{1}{2^7}\)
Vậy \(A=1-\frac{1}{2^7}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{64}{64}-\frac{1}{64}\)
\(=\frac{63}{64}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{63}{64}\)
_Chúc bạn học tốt_
Bài 1: Hơi thắc mắc một chút, ukm tìm x để phân số nguyên à bn:
\(a.\)\(\frac{6+x}{33}\)có giá trị nguyên
\(\Leftrightarrow6+x⋮33\)
\(\Leftrightarrow6+x\in B\left(33\right)=\left\{0;\pm33;\pm66;...\right\}\)
\(\Leftrightarrow x\in\left\{-6;27;-39;60;-72;...\right\}\)
Bài này sao sao ấy, nếu vậy thì sẽ có rất nhiều x thỏa mãn ( vô vàn luôn, ko giới hạn )
\(b.\)\(\frac{12+x}{43-x}\)có giá trị nguyên
\(\Leftrightarrow12+x⋮43-x\)
Ta thấy: \(43-x⋮43-x\forall x\in Z\)
\(\Rightarrow\left(12+x\right)+\left(43-x\right)⋮43-x\forall x\in Z\)
\(\Leftrightarrow12+x+43-x⋮43-x\forall x\in Z\)
\(\Leftrightarrow\left(12+43\right)+\left(x-x\right)⋮43-x\forall x\in Z\)
\(\Leftrightarrow55⋮43-x\forall x\in Z\)
\(\Leftrightarrow43-x\inƯ\left(55\right)=\left\{\pm1;\pm5;\pm11;\pm55\right\}\)
Sau đó bn lập bẳng kết quả và xét là đc nha, mk ko bt lập bảng kết quả trong OLM nên ko giúp bn đc, thứ lỗi nha.
Bài 2:
Câu hỏi của Sarimi chan - Toán lớp 5 - Học toán với OnlineMath
Câu hỏi của Phạm Huyền My - Toán lớp 5 - Học toán với OnlineMath
Vào link này nhé, bài của mk ở đây
Rất vui vì giúp đc bn !!!
= 1/2+1/4+....+1/512+1/512 - 1/512
= 1/2+1/4+....+1/256+1/256 - 1/512
........
= 1/2+1/2 - 1/512 = 1-1/512 = 511/512
k mk nha
làm ơn ghi rõ hộ mình một chút được không