\(\frac{1}{1\times2}+\frac{1}{2\times3}+.....+\frac{1}{99\times100}\)

kb với mk nha...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

23 tháng 6 2017

cảm ơn bn nhìu ^_^

5 tháng 10 2016

1/1 - 1/101 = 100/101

5 tháng 10 2016

bằng 100/101

29 tháng 7 2017

\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

29 tháng 7 2017

\(=\frac{99}{100}\)

23 tháng 1 2017

đặt A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{999.1000}+1\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(=1-\frac{1}{1000}+1\)

\(=\frac{1999}{1000}\)

23 tháng 1 2017

1,999 nhé bạn!

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

30 tháng 7 2015

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(1-\frac{1}{100}\)

\(\frac{99}{100}\)

30 tháng 7 2015

\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

10 tháng 8 2018

Xin lỗi mk nhầm

đề là:

\(1\cdot2\cdot3\cdot4\cdot...\cdot99999999999+\left(\frac{1}{2}+\frac{2}{1}+0,5-1+3-5\right)\)

10 tháng 8 2018

Mk nhầm tiếp: X.lỗi

\(1\cdot2\cdot3\cdot4\cdot...\cdot99999999999\cdot\left(\frac{1}{2}+\frac{2}{1}+0,5-1+3-5\right)\)

Lần này chắc chắn đúng (nãy lỡ tay)

6 tháng 8 2015

A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

6 tháng 8 2015

\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

23 tháng 9 2014

Ta thấy: 1/1x2= 1/1-1/2

1/2x3= 1/2-1/3...

1/99x100= 1/99-1/100

Vậy A= 1-1/2+1/2-1/3+...1/99- 1/100= 1-1/100= 99/100

( Thông cảm vì máy tính của mình không có phần mềm để biểu thị phân số nên đành viết gạch chéo vậy)

19 tháng 3 2020

Ta có :

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)