\(\frac{114}{122}\)      \(\frac{-121}{132}\)       ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

\(\frac{114}{122}=\frac{2.57}{2.61}=\frac{57}{61}\)

\(\frac{-121}{132}=\frac{-11.11}{11.12}=\frac{-11}{12}\)

\(\frac{3737}{4141}=\frac{37.101}{41.101}=\frac{37}{41}\)

29 tháng 2 2020

Trả lời:

\(\frac{114}{122}=\frac{57}{61}\)

\(\frac{-121}{132}=\frac{-11}{12}\)

\(\frac{3737}{4141}=\frac{37}{41}\)

Hok tốt!

Vuong Dong Yet

27 tháng 5 2019

\(a,A=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+...+\frac{1}{73\cdot75}\)

\(A=\frac{1}{2}\left[\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+...+\frac{2}{73\cdot75}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right]\)

\(A=\frac{1}{2}\left[\frac{1}{25}-\frac{1}{75}\right]=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)

\(b,B=\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+\frac{1}{14\cdot17}+...+\frac{1}{197\cdot200}\)

\(3B=\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+\frac{3}{14\cdot17}+...+\frac{3}{197\cdot200}\)

\(3B=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\)

\(3B=\frac{1}{8}-\frac{1}{200}\)

\(3B=\frac{3}{25}\)

\(B=\frac{3}{25}:3=\frac{1}{25}\)

27 tháng 5 2019

#)Giải :

a, \(A=\frac{1}{25.27}+\frac{1}{27.29}+...+\frac{1}{73.75}\)

\(A=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\)

\(A=\frac{1}{25}-\frac{1}{75}\)

\(A=\frac{2}{75}\)

b, \(B=\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+...+\frac{1}{197.200}\)

\(B=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\)

\(B=\frac{1}{8}-\frac{1}{200}\)

\(B=\frac{3}{25}\)

            #~Will~be~Pens~#

23 tháng 4 2020

B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)

=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)

Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)

<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}

Lập bảng:

 2n + 3 1 -1 17 -17
  n -1 -2 7 -10

Vậy ....

23 tháng 4 2020

Bài 2:

Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)

\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)

=> 42n-7-42n+6 chia hết cho d

=> -1 chia hết cho d

mà d thuộc N* => d=1

=> ƯCLN (7n-1; 6n-1)=1

=> đpcm

5 tháng 3 2019

\(\frac{\frac{3}{4}}{\frac{1}{3}}=\frac{1}{4}\)

\(\frac{\frac{1}{2}}{\frac{\frac{6}{5}}{\frac{2}{6}}}=\frac{1}{720}\)

5 tháng 3 2019

Cách lầm nữa bạn ơi 

30 tháng 1 2019

\(-\frac{3}{6}=\frac{x}{-2}=-\frac{18}{y}=-\frac{z}{24}\)

Ta có :+) \(-\frac{3}{6}=\frac{x}{-2}\)

\(\Rightarrow x=\frac{\left(-3\right)\left(-2\right)}{6}\)

\(\Rightarrow x=1\)

+)\(-\frac{3}{6}=-\frac{18}{y}\)

\(\Rightarrow y=\frac{6.\left(-18\right)}{-3}\)

\(\Rightarrow y=36\)

+)\(-\frac{3}{6}=-\frac{z}{24}\)

\(\Rightarrow-z=\frac{\left(-3\right)24}{6}\)

\(\Rightarrow-z=-12\)

\(\Rightarrow z=12\)

Vậy........................

3 tháng 4 2020

a) \(\frac{33}{55}=\frac{33\div11}{55\div11}=\frac{3}{5}\)

b) \(\frac{-56}{72}=\frac{-56\div8}{72\div8}=\frac{-7}{9}\)

c) \(\frac{15}{-105}=\frac{15\div15}{-105\div15}=\frac{1}{-7}\)

d)\(\frac{3.14}{7.9}=\frac{3.2.7}{7.3.3}=\frac{2}{3}\)

 Học tốt !

3 tháng 4 2020

Bài 1. d) \(\frac{9.5-9.3}{18}=\frac{9\left(5-3\right)}{18}=\frac{18}{18}=1\)

Bài 2. Một ngày có 24 giờ. An ngủ 9 giờ mỗi ngày \(\Rightarrow\)An ngủ \(\frac{9}{24}\)ngày hay \(\frac{3}{8}\)ngày 

                           \(\Rightarrow\)thời gian An thức chiếm : 8-3=5 ( phần / ngày)

14 tháng 10 2018

\(\frac{30}{25}=\frac{6}{5}\)

\(\frac{70}{49}=\frac{10}{7}\)

\(\frac{-54}{36}=\frac{-3}{2}\)

\(\frac{30}{25}=\frac{30:5}{25:5}=\frac{6}{5}\)

\(\frac{70}{49}=\frac{70:7}{49:7}=\frac{10}{7}\)

\(-\frac{54}{36}=\frac{54:18}{36:18}=\frac{3}{2}\)

27 tháng 5 2019

\(\left(1+\frac{1}{4}\right).\left(1+\frac{1}{8}\right).\left(1+\frac{1}{15}\right).\left(1+\frac{1}{24}\right)...\left(1+\frac{1}{9999}\right)\)

\(=\frac{5}{4}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}...\frac{10000}{9999}=\frac{5.9.16.25...10000}{4.8.15.24...9999}=\frac{5.3^2.4^2.5^2...100^2}{4.2.4.3.5.4.6...99.101}\)

\(=\frac{5.3.4.5...100.3.4.5...100}{4.2.3.4...99.4.5.6...101}=\frac{5.100.3}{4.2.101}=\frac{5.25.3}{2.101}=\frac{375}{202}.\)