Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 1/18.19.20
2A = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 +...+1/18.19 - 1/19.20
2A = 1/1.2 - 1/19.20
2A = 1/2 - 1/19.20
A = (1/2 - 1/19.20) : 2
A = 1/4 - 1/(19.20.2)
MÀ 1/(19.20.2) > 0
nên A<1/4
Đặt A=(đã cho).
=>2A=2/1*2*3+2/2*3*4+2/3*4*5+...+2/37*38*39.
=>2A=1/1*2-1/2*3+1/2*3-1/3*4+...+1/37*38-1/38*39.
=>2A=1/1*2=1/38*39.
Đến đây tự bấm máy nha.
tk mk nha.
chắc chắn đúng,nay mk làm bài này.
-chúc ai tk mk học giỏi-
= 1/2.(2/1.2.3+2/2.3.4+.....+2/50.51.52
=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+....+1/50.51-1/51.52
=1/2.(1/1.2-1/51.52)
=1/2.(1/2-1/2652)
=1/2.1325/2652
=1325/5304
A=1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/50.51-1/51.52
A=1/1.2-1/51.52
phần còn lại tự giải nhé
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+..........+\frac{1}{8.9}-\frac{1}{9.10}\)
\(=\frac{1}{1.2}-\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{90}\)
\(=\frac{45}{90}-\frac{1}{90}\)
\(=\frac{44}{90}\)
\(=\frac{22}{45}\)
Cho \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}.\)
Chứng minh rằng:\(B< \frac{1}{4}.\)
2B=\(\frac{2}{1.2.3}\)+.....+\(\frac{2}{18.19.20}\)
2B=\(\frac{1}{1.2}\)-\(\frac{1}{2.3}\)+\(\frac{1}{2.3}\)-\(\frac{1}{3.4}\).......+\(\frac{1}{18.19}\)-\(\frac{1}{19.20}\)
2B=\(\frac{1}{1.2}\)-\(\frac{1}{19.20}\)
B=\(\frac{1}{1.2}\):2-\(\frac{1}{19.20}\):2
B=\(\frac{1}{1.2}\).\(\frac{1}{2}\)-\(\frac{1}{19.20}\).\(\frac{1}{2}\)
=\(\frac{1}{4}\)-\(\frac{1}{19.20.2}\)<\(\frac{1}{4}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\)
\(2B=\frac{1}{1.2}-\frac{1}{19.20}\)
\(B=\left(\frac{1}{2}-\frac{1}{19.20}\right):2\)
\(B=\frac{189}{760}\)
Trả lời
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{18\cdot19\cdot20}\)
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}+\frac{1}{19\cdot20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}\)
\(=\frac{19}{20}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(=\frac{1}{2}.\left(\frac{190}{380}-\frac{1}{380}\right)\)
\(=\frac{1}{2}.\frac{189}{380}\)
\(=\frac{189}{760}\)
Chúc bạn học tốt !!!
Mik lười quá bạn tham khảo câu 3 tại đây nhé:
Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)
\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)
\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)
Có \(\frac{1}{1.2.3}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)
\(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)
...
\(\frac{1}{17.18.19}=\frac{1}{2}\left(\frac{1}{17.18}-\frac{1}{18.19}\right)\)
=>\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{17.18.19}\)=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{17.18}-\frac{1}{18.19}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{18.19}\right)=\frac{1}{2}.\frac{1}{2}-\frac{1}{2}.\frac{1}{18.19}< \frac{1}{4}\)