Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ 10-x/100 + 20-x/110 +30-x/120=3
tương đương với: 10-x/100 - 1 +20-x/110 -1 + 30-x/120 -1 =3 -3
tương đương với: 90-x/100 + 90-x/110 + 90-x/120 =0
tương đương với: (90-x)(1/100+1/110+1/120)=0
tương đương với: 90-x=0 (vì 1/100+1/110+1/120 khác 0)
tương đương với: x=90
\(\dfrac{10-x}{100}\) + \(\dfrac{20-x}{110}\)+\(\dfrac{30-x}{120}\)=3
<=> \(\dfrac{10-x}{100}\)-1+\(\dfrac{20-x}{110}\)-1+\(\dfrac{30-x}{120}\)-1 = 0
<=> \(\dfrac{-x-90}{100}\)+\(\dfrac{-x-90}{110}\)+\(\dfrac{-x-90}{120}\)=0
<=> (-x-90) ( \(\dfrac{1}{100}\)+\(\dfrac{1}{110}\)+\(\dfrac{1}{120}\))=0
<=> (-x-90) = 0 ( do 1/100 +1/110+1/120 khác 0)
<=> -x-90 = 0
<=> -x = 90
<=> x =-90
Vậy nghiệm của pt là x=-90
\(\Leftrightarrow\frac{200\left(x+20\right)}{2x\left(x+20\right)}-\frac{240x}{2x\left(x+20\right)}=\frac{x\left(x+20\right)}{2x\left(x+20\right)}\) đk: x\(\ne0\) , x \(\ne-20\)
\(\Rightarrow200x+4000-240x=x^2+20x\)
\(\Leftrightarrow-x^2-60x+4000=0\)
\(\Leftrightarrow x^2+60x-4000=0\)
\(\Leftrightarrow x^2+100x-40x-4000=0\)
\(\Leftrightarrow\left(x+100\right)\left(x-40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+100=0\\x-40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-100\left(tmđk\right)\\x=40\left(tmđk\right)\end{matrix}\right.\)
Vậy S\(=\left\{-100;40\right\}\)
\(\frac{100}{x}-\frac{120}{x+20}=\frac{1}{2}\)
\(\Leftrightarrow\frac{100}{x}-\frac{120}{x+20}=\frac{1}{2},x\ne0,x\ne-20\)
\(\Leftrightarrow\frac{100}{x}-\frac{120}{x+20}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{200\left(x+20\right)-240x-x\left(x+20\right)}{2x\left(x+20\right)}=0\)
\(\Leftrightarrow\frac{200x+4000-240x-x^2-20x}{2x\left(x+20\right)}=0\)
\(\Leftrightarrow-60x+4000-x^2=0\)
\(\Leftrightarrow-x^2-60x+4000=0\)
\(\Leftrightarrow x^2+60x-4000=0\)
\(\Leftrightarrow\frac{-60\pm\sqrt{60^2}-4.1\left(-4000\right)}{2}\)
\(\Leftrightarrow\frac{-60\pm\sqrt{3600+16000}}{2}\)
\(\Leftrightarrow\frac{-60\pm\sqrt{19600}}{2}\)
\(\Leftrightarrow\frac{-60\pm140}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{-60+140}{2}\\\frac{-60-140}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=40\\x=-100\end{matrix}\right.,x\ne0,x\ne-20\)
\(\frac{x+109}{91}+\frac{x+110}{90}-\frac{x+120}{80}-\frac{x+135}{65}=4\)( tìm x đê nà :D giúp con )
\(\frac{x+109}{91}+\frac{x+110}{90}-\frac{x+120}{80}-\frac{x+135}{65}=4\)
\(\left(\frac{x+109}{91}+1\right)+\left(\frac{x+110}{90}+1\right)+\left(\frac{-x+120}{80}+1\right)+\left(\frac{-x+135}{65}+1\right)=4+4\)
\(\frac{x+200}{91}+\frac{x+200}{90}-\frac{x+200}{80}-\frac{x+200}{65}=8\)
\(\left(x+200\right)\left(\frac{1}{91}+\frac{1}{90}-\frac{1}{80}-\frac{1}{65}\right)=8\)
chỉ làm tới đây được thôi bạn
1) Ta có: \(5\left(x-2\right)=3x+10\)
\(\Leftrightarrow5x-10-3x-10=0\)
\(\Leftrightarrow2x-20=0\)
\(\Leftrightarrow2\left(x-10\right)=0\)
Vì 2>0
nên x-10=0
hay x=10
Vậy: x=10
2) Ta có: \(x^2\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x^2\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\\x=-2\end{matrix}\right.\)
Vậy: x∈{-2;2;5}
3) Ta có: \(\frac{3x+1}{4}+\frac{8x-21}{20}=\frac{3\left(x+2\right)}{5}-2\)
\(\Leftrightarrow\frac{5\left(3x+1\right)}{20}+\frac{8x-21}{20}-\frac{12\left(x+2\right)}{20}+\frac{40}{20}=0\)
\(\Leftrightarrow15x+5+8x-21-12\left(x+2\right)+40=0\)
\(\Leftrightarrow15x+5-8x-21-12x-24+40=0\)
\(\Leftrightarrow-5x=0\)
hay x=0
Vậy: x=0
4) ĐKXĐ: x≠5; x≠-5
Ta có: \(\frac{3}{4x-20}+\frac{7}{6x+30}=\frac{15}{2x^2-50}\)
\(\Leftrightarrow\frac{3}{4\left(x-5\right)}+\frac{7}{6\left(x+5\right)}-\frac{15}{2\left(x-5\right)\left(x+5\right)}=0\)
\(\Leftrightarrow\frac{9\left(x+5\right)}{12\left(x-5\right)\left(x+5\right)}+\frac{14\left(x-5\right)}{12\left(x+5\right)\left(x-5\right)}-\frac{180}{12\left(x-5\right)\left(x+5\right)}=0\)
\(\Leftrightarrow9x+45+14x-70-180=0\)
\(\Leftrightarrow23x-205=0\)
\(\Leftrightarrow23x=205\)
hay \(x=\frac{205}{23}\)(tm)
Vậy: \(x=\frac{205}{23}\)
a: \(\Leftrightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot\left(x-1\right)+\dfrac{1}{10}x-x=-\dfrac{9}{10}\)
\(\Leftrightarrow\dfrac{9}{10}x-\dfrac{9}{10}-\dfrac{9}{10}x=-\dfrac{9}{10}\)
=>-9/10=-9/10(luôn đúng)
b: \(\Leftrightarrow\dfrac{195x+195+130x+195+117x+195+100x+195}{195}=\dfrac{22\cdot39+4\cdot65+6\cdot39+40\cdot5}{195}\)
=>347x+780=1552
=>347x=772
hay x=772/347
1) Ta có : \(4x+20=0\)
=> \(x=-\frac{20}{4}=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
2) Ta có : \(3x+15=30\)
=> \(3x=15\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
3) Ta có : \(8x-7=2x+11\)
=> \(8x-2x=11+7=18\)
=> \(6x=18\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
4) Ta có : \(2x+4\left(36-x\right)=100\)
=> \(2x+144-4x=100\)
=> \(-2x=-44\)
=> \(x=22\)
Vậy phương trình có tập nghiệm là \(S=\left\{22\right\}\)
5) Ta có : \(2x-\left(3-5x\right)=4\left(x+3\right)\)
=> \(2x-3+5=4x+12\)
=> \(-2x=10\)
=> \(x=-5\)
Vậy phương trình có tập nghiệm là \(S=\left\{-5\right\}\)
1) 4x+20=0
\(\Leftrightarrow\) 4x=-20
\(\Leftrightarrow\) x=-5
Vậy pt trên có tập nghiệm là S={-5}
2) 3x+15=30
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
3) 8x-7=2x+11
\(\Leftrightarrow\) 8x-2x=11+7
\(\Leftrightarrow\) 6x=18
\(\Leftrightarrow\) x=3
Vậy pt trên có tập nghiệm là S={3}
4) 2x+4(36-x)=100
\(\Leftrightarrow\) 2x+144-4x=100
\(\Leftrightarrow\) -2x+144=100
\(\Leftrightarrow\) -2x=-44
\(\Leftrightarrow\) x=22
Vậy pt trên có tập nghiệm là S={22}
5) 2x-(3-5x)=4(x+3)
\(\Leftrightarrow\) 2x-3+5x=4x+12
\(\Leftrightarrow\) 2x+5x-4x=12+3
\(\Leftrightarrow\) 3x=15
\(\Leftrightarrow\) x=5
Vậy pt trên có tập nghiệm là S={5}
6) 3x(x+2)=3(x-2)2
\(\Leftrightarrow\) 3x2+6x=3(x2-2x.2+22)
\(\Leftrightarrow\) 3x2+6x=3x2-12x+12
\(\Leftrightarrow\) 3x2-3x2+6x+12x=12
\(\Leftrightarrow\) 18x=12
\(\Leftrightarrow\) x=\(\frac{2}{3}\)
Ta có : \(\frac{10-x}{100}+\frac{20-x}{110}+\frac{30-x}{120}=3\)
<=> \(\frac{10-x}{100}+\frac{20-x}{110}+\frac{30-x}{120}-3=0\)
<=> \(\left(\frac{10-x}{100}-1\right)+\left(\frac{20-x}{110}-1\right)+\left(\frac{30-x}{120}-1\right)\)= 0
<=> \(\left(\frac{-90-x}{100}\right)+\left(\frac{-90-x}{110}\right)+\left(\frac{-90-x}{120}\right)=0\)
<=> (-90-x) \(\left(\frac{1}{100}+\frac{1}{110}+\frac{1}{120}\right)=0\)
<=> -90- x = 0 vì \(\left(\frac{1}{100}+\frac{1}{110}+\frac{1}{120}\right)\ne0\) ( > 0)
<=> -x = 90
<=> x = -90
Vậy x = -90
(10-x)/100+(20-x)/110+(30-x)/120=3
=>(10-x)/100+(20-x)/110+(30-x)/120-3=0
=>(10-x)/100-1+(20-x)/110-1+(30-x)/120-1=0
=>(-90-x)/100+(-90-x)/110+(-90-x)/120=0
=.>(-90-x)(1/100+1/110+1/120)=0
=.>(-90-x)=0(vì(1/100+1/110+1/120)luôn>0)
=>x=-90