Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=3^x,t>0\)
Bất phương trình trở thành :
\(m.t^2+9\left(m-1\right)t+m-1>0\)
\(\Leftrightarrow m\left(t^2+9t+1\right)>9t+1\)
\(\Leftrightarrow m>\frac{9t+1}{t^2+9t+1}\)
Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi :
\(m>max_{t>0}\frac{9t+1}{t^2+9t+1}\)
Xét hàm số \(f\left(t\right)=\frac{9t+1}{t^2+9t+1};t>0\)
Ta có : \(f'\left(t\right)=\frac{-9t-2}{\left(t^2+9t+1\right)^2}< 0,t>0\)
đây là hàm nghịch biến suy ra \(f\left(t\right)< f\left(0\right)=1\)
Do đó : \(\frac{9t+1}{t^2+9t+1}< 0,t>0\) nên các giá trị cần tìm là \(m\ge1\)
1. pt \(\Leftrightarrow2\left|x\right|=4m-1\Leftrightarrow\left|x\right|=\frac{4m-1}{2}\)
pt có nghiệm \(\frac{4m-1}{2}\ge0\Leftrightarrow m\ge\frac{1}{4}\)
2. ĐKXĐ : \(\left|x^2+2x-3\right|-3\ne0\)
\(\Leftrightarrow x^2+2x-3\ne\pm3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne2\\x\ne-1\pm\sqrt{7}\end{matrix}\right.\)
1/ \(x^2-2\left(m-1\right)x+m^2-3m=0\)
\(\Delta'>0\Leftrightarrow m^2-2m+1-m^2+3m>0\Leftrightarrow m>-1\)
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(x^2_1+x^2_2\le8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le8\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-3m\right)\le8\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m\le8\)
\(\Leftrightarrow2m^2-2m-4\le0\Leftrightarrow-1\le m\le2\)
\(\Rightarrow-1< m\le2\)
Câu 1b, 2, 3 làm tương tự
Câu 4:
\(bpt>0,\forall m\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4m^2-\left(m+1\right)\left(-3m-5\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow7m^2+8m+5< 0\left(lđ,\forall m\right)\)
\(\Rightarrow m>-1\)
Xét tử thức: \(-x^2+x-1=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0,\forall x\)
Vậy đề bài tương đương: \(x^2+\left(m+1\right)x+2m+7>0,\forall x\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow\left(m+1\right)^2-4\left(2m+7\right)< 0\Leftrightarrow-3< m< 9\)