Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xem lại xem có sai đề bài không bạn ơi, sai thì sửa lại nhé
a, -7/3 × 4/9 + -7/3 × 5/9 b thì mình chưa làm ra
= -7/3 × (4/9 + 5/9)
= -7/3 × 1
= -7/3
\(\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{1}{5}-\frac{1}{7}-\frac{2}{35}\right)\)
\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right)\left(\frac{7}{35}-\frac{5}{35}-\frac{2}{35}\right)\)
\(=\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right).0\)
\(=0\)
\(S=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{99.101}\right)=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{101}\right)=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{101}\right)\)
\(=\frac{3}{2}.\frac{96}{505}=\frac{288}{1010}\)
\(S=\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{99.101}\)
\(\Rightarrow S=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{99.101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow S=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{101}\right)=\frac{3}{2}.\frac{96}{505}\)
\(\Rightarrow S=\frac{144}{505}\)
\(\frac{-9}{4}\).\(19\frac{2}{5}\)+\(\left(\frac{-3}{2}\right)^2\).\(\left(-14\frac{3}{5}\right)\)-\(\left(\frac{99}{100}\right)^0\)
=\(\frac{-9}{4}\).\(\frac{97}{5}\)+\(\frac{9}{4}\).\(\frac{-73}{5}\)-1
=\(\frac{-9}{4}\).\(\frac{97}{5}\)+\(\frac{-9}{4}\).\(\frac{73}{5}\)-1
=\(\frac{-9}{4}\).(\(\frac{97}{5}\)+\(\frac{73}{5}\))
=\(\frac{-9}{4}\).34
=\(\frac{-153}{2}\)
Học tốt
A=2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101
A= 2 - 1/3 + 1/3 - 1/5 + 1/5 - ... + 2/99 - 2/101
A = 2 - 2/101 = 200/101
B = 3-1/3+1/3-1/5+1/5-...+3/49-3/51
B = 3-3/51(tự tính nhé)
C = 5(5/1.6+5/6.11+5/11.16+....+5/26-5/31
C = 5(5-1/31)(tự tính)
D rút gon cho 2 rồi 3D , sau đó 5(3/.... tương tự các cách làm trên)
2E nhân lên rồi giải giống trên
3F Rồi nhân 4/77 và rút gọn thì tính được
a, A= \(\frac{1}{1}\)- \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+......+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+(-\(\frac{1}{3}\)+\(\frac{1}{3}\)-.....-\(\frac{1}{99}\)+\(\frac{1}{99}\))
A=\(\frac{1}{1}\)-\(\frac{1}{100}\)+0
A=1-\(\frac{1}{100}\)=\(\frac{100}{100}\)-\(\frac{1}{100}\)=\(\frac{99}{100}\)
K = (\(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\))+...+\(\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
\(=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^1+3^2+3^3+3^4\right)\)
\(=120+...+120\)(Có 25 số 120)
\(=25.120\)
\(=300\)
vậy ...
Bài làm
a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)
= \(1-\frac{9}{9^{100}+1}\)
\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)
= \(1-\frac{10}{10^{99}-1}\)
Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)
nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)
\(\Rightarrow A< B\)
Bài làm
b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)
= \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)
\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)
= \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)
Vì \(1+5^9.3< 1+6^9.4\)
nên A < B
\(\frac{-3}{5}\)+(\(\frac{-2}{5}\)-99)=-100 nha
tích giùm cái
tính ra lun giùm đi mà!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!please!!!!!!!