\(\forall n\in N\). CMR:

a) \(A=n^2+3n+18⋮̸49\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

chỗ mk ghi chia hết và không chia hết, pn ghi kí hiệu nhé, cùng chia hết thì ghi chữ; pn dùng ngoặc nhọn chỗ do đó và mà nhé.

a) A= n2 + 3n + 18

= n2 + 5n - 2n - 10 + 28

= n(n + 5) - 2(n + 5) + 28

= (n + 5)(n - 2) + 28

Xét (n + 5) và (n - 2)

(n + 5) - (n - 2) = 7 chia hết cho 7

=> (n + 5), (n - 2) cùng chia hết cho 11

Do đó: (n + 5).(n - 2) chia hết cho 7.7= 49

Mà: 28 chia hết cho 7

=> (n + 5)(n - 2) + 28 không chia hết cho 49

b) B = n2 + 3n - 6

= n2 + 7n - 4n - 28 + 22

= n(n + 7) - 4(n + 7) + 22

= (n + 7)(n - 4) + 22

Xét (n + 7) và (n - 4)

(n + 7) - (n - 4)= 11 chia hết cho 11

=> (n + 7) và (n - 4) cùng chia hết cho 11

Do đó: (n + 7).(n - 4) chia hết cho 11.11 = 121

Mà: 22 không chia hết hết cho 121

=> (n + 7)(n - 4) + 22 không chia hết cho 121

20 tháng 11 2017

chỗ câu a là cùng chia hết cho 7 nhé, mk ghi lộn, xin lỗi

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

Ta có:

\(x^{8n}+x^{4n}+1=(x^{4n})^2+2.x^{4n}+1-x^{4n}\)

\(=(x^{4n}+1)^2-x^{4n}=(x^{4n}+1+x^{2n})(x^{4n}+1-x^{2n})\)

Xét \(x^{4n}+1+x^{2n}=(x^{2n})^2+2.x^{2n}+1-x^{2n}=(x^{2n}+1)^2-x^{2n}\)

\(=(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)

Do đó:

\(x^{8n}+x^{4n}+1=(x^{4n}+1-x^{2n})(x^{2n}+1+x^n)(x^{2n}+1-x^n)\)

\(\Rightarrow x^{8n}+x^{4n}+1\vdots x^{2n}+x^n+1\) (đpcm)

b)

Sửa đề: \(x^{3m+1}+x^{3n+2}+1\vdots x^2+x+1\)

Đặt \(A=x^{3m+1}+x^{3n+2}+1\)

\(\Leftrightarrow A=x(x^{3m}-1)+x+x^2(x^{3n}-1)+x^2+1\)

\(\Leftrightarrow A=x[ (x^3)^m-1]+x^2[(x^3)^n-1]+(x^2+x+1)\)

Khai triển:

\((x^3)^m-1=(x^3)^m-1^m=(x^3-1).T=(x-1)(x^2+x+1)T\)

(đặt là T vì phần biểu thức đó không quan trọng)

\(\Rightarrow (x^3)^m-1\vdots x^2+x+1\)

Tương tự, \((x^3)^n-1\vdots x^2+x+1\)

Do đó, \(A=x(x^{3m}-1)+x^2(x^{3n}-1)+x^2+x+1\vdots x^2+x+1\)

Ta có đpcm.

15 tháng 8 2018

Help me TT 

15 tháng 8 2018

Giúp mk vs ? 

5 tháng 8 2017

a, Ta có : \(4n^2.\left(n+2\right)+4n.\left(n+2\right)\)

\(=\left(n+2\right).\left(4n^2+4n\right)\)

\(=4n.\left(n+2\right).\left(n+1\right)\)

\(=4n.\left(n+1\right).\left(n+2\right)⋮4\)

\(n.\left(n+1\right).\left(n+2\right)\) là tích của ba số liên tiếp

\(\Rightarrow n.\left(n+1\right).\left(n+2\right)⋮2\)\(3\)

\(n.\left(n+1\right).\left(n+2\right)⋮\left(2.3\right)\)

Vậy \(4n^2.\left(n+2\right)+4n.\left(n+2\right)⋮24\left(đpcm\right)\)

b,

+ Thực hiện phép tính :

6n^2 + n - 1 - 6n^2 + 4n 3n + 2 2n - 1 -3n - 1 - -3n - 2 1

Ta có : \(\dfrac{6n^2+n-1}{3n+2}=2n-1+\dfrac{1}{3n+2}\)

Để \(\left(6n+n-1\right)⋮\left(3n+2\right)\) thì \(\dfrac{1}{3n+2}\in Z\)

\(\Rightarrow3n+2\inƯ\left(1\right)\)

\(\Rightarrow3n+2\in\left\{\pm1\right\}\)

Ta có bảng sau :

3n+2 1 -1
n \(-\dfrac{1}{3}\) -1

Vậy n = -1

3 tháng 1 2019

C/M chia hết cho 3 và 8

3 tháng 1 2019

\(\left(n^2+3n+1\right)-1=\left(n^2+3n+1-1\right)\left(n^2+3n+1+1\right)\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Bn chứng minh biểu thức trên chia hết cho 3 và 2 nhé!

Sau đó lí luận là (3,2) = 1 và 3.23=24 nên biểu thức chia hết cho 24  

P/s:  ( Nếu có sai sót mong thông cảm =))

17 tháng 8 2018

Bạn có muốn biết nơi nào bạn sẽ vừa HỌC vừa CHƠI vừa KIẾM TIỀN được không?

BÀI TẬP KHÓ?
CÓ ALFAZI
Năm học mới rồi, các bạn bè có anh chị hỗ trợ bài tập, hướng dẫn học tập, cuối năm đạt kết quả tốt? ✅Bạn không có ai để làm điều đó
Truy cập: https://alfazi.edu.vn để trao đổi bài tập, chia sẻ tài liệu và tham gia hoạt động bổ ích cho học sinh, sinh viên nhé!
Đặc biệt, khi bạn tham gia giải đáp bài tập, bạn sẽ nhận được “phụ cấp” siêu khủng từ Web!
Một web học tập rất thân thiện, môi trường học tập cực tốt, Các bạn đừng bỏ phí cơ hội này nhé!
Web rất hân hạnh được đón tiếp những tài năng tương lai của đất nước!
❤️❤️😘😘😘Love you💋💋

TRUY CẬP HTTPS://ALFAZI.EDU.VN ĐỂ NHẬN 20.000 SAU KHI ĐĂNG KÍ!

17 tháng 8 2018

Thêm điều kiện \(n\in N\)

\(a,n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n^2+2n+n+2\right)=n\left[n\left(n+2\right)+n+2\right]\)

\(=n\left(n+1\right)\left(n+2\right)\) là tích của 3 số liên tiếp nên chia hết cho 2 và 3 nên chia hết cho 6

\(b,\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right)\left(n^2+n-1+1\right)\)

\(=\left(n^2+n-2\right)\left(n^2+n\right)=\left(n^2+2n-n-2\right)n\left(n+1\right)\)

\(=\left[n\left(n+2\right)-\left(n+2\right)\right]n\left(n+1\right)\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích của 4 số liên tiếp nên có 1 số chia hết cho 2,1 số chia hết cho 4 và chia hết cho 3

hay \(\left(n^2+n-1\right)^2-1\) chia hết cho 8 và 3 nên chia hết cho 24

14 tháng 10 2017

a)A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).

14 tháng 10 2017

b)A =n^12-n^8-n^4+1
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2
=(n^4+1)[(n^2+1)(n^2-1)]^2
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1)
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8
Do đó : A chia hết cho 64*8=512