K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

https://olm.vn/hoi-dap/tim-kiem?id=235207&subject=1&q=++++++++++Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+324n+1+2+++chia+h%E1%BA%BFt+cho+11,+v%E1%BB%9Bi+m%E1%BB%8Di+n%E2%88%88N+++++++++

Bạn xem thử đi câu 2 ý

26 tháng 8 2017

Giải casio được không?/

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Bạn xem lời giải tại đây:

Câu hỏi của Lệ Nguyễn Thị Mỹ - Toán lớp 9 | Học trực tuyến

6 tháng 1 2018

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(a+b\right)\left(\dfrac{x^4}{a}+\dfrac{y^4}{b}\right)\ge\left(x^2+y^2\right)^2=1\)

\(\Rightarrow VT=\dfrac{x^4}{a}+\dfrac{y^4}{b}\ge\dfrac{1}{a+b}=VP\)

Dấu "=" khi \(\dfrac{x^2}{a}=\dfrac{y^2}{b}\)\(\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\Rightarrow a+b=\dfrac{a}{x^2}\Rightarrow\left(a+b\right)^n=\dfrac{a^n}{x^{2n}}\)

Xét \(VT\) của biểu thức cần c.m:

\(VT=\left(\dfrac{x^2}{a}\right)^n+\left(\dfrac{y^2}{b}\right)^n=2\cdot\dfrac{x^{2n}}{a^n}\)

\(VP=\dfrac{2}{\left(a+b\right)^n}=\dfrac{2}{\dfrac{a^n}{x^{2n}}}=2\cdot\dfrac{x^{2n}}{a^n}\)

Vậy có ĐPCM