\(F\left(x\right)=x^3+x^2+a\) ; \(G\left(x\right)=x+2\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

x^3 + x^2 + a x + 2 x^2 - x + 2 x^3 + 2x^2 - x^2 + a -x^2 - 2x 2x + a 2x + 4 a - 4 -

Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow a-4=0\Leftrightarrow a=4\)

Vậy a= 4 thì f(x) chia hết cho g(x)

16 tháng 11 2017

mk có thể tự chia ko ,mk chia r mà nó lại bị lỗi .

26 tháng 11 2019

Bài 1 : 

Gọi f( x )  = 2n2 + n - 7

       g( x ) = n - 2

Cho g( x )  = 0

\(\Leftrightarrow\)n - 2 = 0

\(\Rightarrow\)n      = 2

\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7

\(\Rightarrow\)f( 2 )  = 3

Để f( x ) \(⋮\)g( x )

\(\Rightarrow\)n - 2 \(\in\)Ư( 3 )  = { \(\pm\)1 ; \(\pm\)3 }

Ta lập bảng :

n - 21- 13- 3
n315- 1

Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }

26 tháng 11 2019

2n^2+n-7 n-2 2n+6 2n^2-4n 6n-7 6n-12 5

Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)

Làm nốt

16 tháng 8 2017

a) gọi Q(x) là thương khi chia f(x) cho g(x)

khi đó ta có dạng: f(x)=g(x).Q(x)=> f(x)=(x+3)(Q(x)   (1)

Vì (1) luôn đúng vs mọi x nên thay x=-3 vào (1) ta đc:

f(-3)= \(\left(-3\right)^3+3.\left(-3\right)^2+5.\left(-3\right)+a=0\) 0

    <=> \(-15+a=0\)

<=>a=15

Vậy vs a=15 thì f(x) chia hết cho g(x)

27 tháng 6 2017

Đặt tính chia tìm thương và dư của f(x) cho g(x) ta được:

\(f\left(x\right)=g\left(x\right)\cdot\left(6x^2-x+a-6b-1\right)+\left[\left(a-5b+2\right)+\left(6b^2+b-ab+2\right)\right]\)

Vậy để f(x) chia hết cho g(x) thì dư phải bằng 0, khi đó:

\(\hept{\begin{cases}a-5b+2=0\\6b^2+b-ab+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=5b-2\\6b^2+b-b\left(5b-2\right)+2=0\Rightarrow b^2+3b+2=0\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}b=-1\Rightarrow a=-7\\b=-2\Rightarrow a=-12\end{cases}}\)

Vậy các giá trị cần xác định của a, b để f(x) chia hết cho g(x) là (a;b) = (-7;-1) , (-12;-2)

27 tháng 6 2017

Hay ghê :)