Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: F(1) = G(2)
\(\Rightarrow2.1^2+a.1+4=2^2-5.2-b\)
\(2+a+4=4-10-b\)
\(6+a=-6-b\)
\(\Rightarrow a+b=-6-6\)
\(a+b=-12\Rightarrow a=-12-b\)
ta có: F(-1) = G(5)
\(\Rightarrow2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\)
\(2-a+4=25-25-b\)
\(6-a=-b\)
\(\Rightarrow6-\left(-12-b\right)=-b\)
\(6+12+b=-b\)
\(b+b=-6-12\)
\(2b=-18\)
\(b=\left(-18\right):2\)
\(b=-9\)
\(\Rightarrow a+\left(-9\right)=-12\)
\(a=\left(-12\right)-\left(-9\right)\)
\(a=-3\)
KL: a= -3 ; b= -9
Chúc bn học tốt !!!!!
Thay F(1) với x =1 vào thôi
G(2) cũng vậy thay x=2 vào rồi cho 2 cái bằng nhau là tìm ra a
Ta có \(f\left(1\right)=g\left(2\right)\)
=> \(2+a+4=4-20-b\)
=> \(\left(2+a+4\right)-\left(4-20-b\right)=0\)
=> \(2+a+4-4+20+b=0\)
=> \(22+a+b=0\)
=> \(a+b=-22\)(1)
và \(f\left(-1\right)=g\left(5\right)\)
=> \(2-a+4=25-25-b\)
=> \(2-a+4=-b\)
=> \(2+4=a-b\)
=> \(a-b=6\)
=> \(a=6+b\)(2)
Thế (2) vào (1), ta có: \(6+b+b=-22\)
=> \(2b=-28\)
=> \(b=-14\)
và \(a=6+b=6-14=-8\)
Ta có: \(f\left(1\right)=g\left(1\right)\Rightarrow a.1+b=2.1^2+1+7\Rightarrow a+b=10\) (1)
\(f\left(2\right)=g\left(-2\right)\Rightarrow a.2+b=2.\left(-2\right)^2+\left(-2\right)+7\Rightarrow2a+b=13\) (2)
Từ (1) và (2) \(\Rightarrow2a+b-a-b=13-10\Rightarrow a=3\Rightarrow3+b=10\Rightarrow b=7\)
Vậy a=3; b=7
bài 1
a) \(-\frac{1}{3}xy\).(3\(x^2yz^2\))
=\(\left(-\frac{1}{3}.3\right)\).\(\left(x.x^2\right)\).(y.y).\(z^2\)
=\(-x^3\).\(y^2z^2\)
b)-54\(y^2\).b.x
=(-54.b).\(y^2x\)
=-54b\(y^2x\)
c) -2.\(x^2y.\left(\frac{1}{2}\right)^2.x.\left(y^2.x\right)^3\)
=\(-2x^2y.\frac{1}{4}.x.y^6.x^3\)
=\(\left(-2.\frac{1}{4}\right).\left(x^2.x.x^3\right).\left(y.y^2\right)\)
=\(\frac{-1}{2}x^6y^3\)
Bài 3:
a) \(f\left(x\right)=-15x^2+5x^4-4x^2+8x^2-9x^3-x^4+15-7x^3\)
\(f\left(x\right)=\left(5x^4-x^4\right)-\left(9x^3+7x^3\right)-\left(15x^2+4x^2-8x^2\right)+15\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
b)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=4\cdot1^4-16\cdot1^3-11\cdot1^2+15\)
\(f\left(1\right)=-8\)
\(f\left(x\right)=4x^4-16x^3-11x^2+15\)
\(f\left(-1\right)=4\cdot\left(-1\right)^4-16\cdot\left(-1\right)^3-11\cdot\left(-1\right)^2+15\)
\(f\left(-1\right)=24\)
Ta có : f(x) = ax3 + 4x(x2-x) - 4x + 8
= ax3 + 4x3 - 4x2 - 4x + 11 - 3
= x3 (a + 4) - 4x(x + 1) + 11-3
f(x) = g (x) \(\Leftrightarrow\) x3 (a + 4) - 4x(x + 1) +11-3 = x3 - 4x(bx + 1) + c-3
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}a+4=1\\x+1=bx+1\\c=11\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}a=-3\\b=1\\c=11\end{matrix}\right.\)
vậy a = -3 , b = 1 và c = 11
f(x)=g(x)
<=>(a+4)x3-4x2-4x+8=x3-4bx2-4x+c-3
Đồng nhất thức ta được
a+4=1 a=-3
-4=-4b <=> b=1
8=c-3 c=11
Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:
G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)
Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)
Vậy a = -3 , b = -1
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
Lời giải:
\(\left\{\begin{matrix} f(1)=g(2)\\ f(-1)=g(5)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2.1^2+a.1+4=2^2-5.2-b\\ 2(-1)^2-a+4=5^2-5.5-b\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=-12\\ a-b=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=-3\\ b=-9\end{matrix}\right.\)
Vậy...........
em cảm ơn cô