Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:
3(12 + 4t) +5(9 + 3t) - (1 + t) = 0
⇔ 26t + 78 = 0 ⇔ t = -3.
Tức là d ∩ (α) = M(0 ; 0 ; -2).
Trong trường hợp này d cắt (α) tại điểm M.
b) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:
(1 + t) + 3.(2 - t) + (1 + 2t) + 1 = 0
⇔ 0.t + t = 9, phương trình vô nghiệm.
Chứng tỏ d và (α) không cắt nhau., ta có d // (α).
c) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:
(1 + 1) + (1+ 2t) + (2 - 3t) - 4 = 0
⇔ 0t + 0 = 0,phương trình này có vô số nghiệm, chứng tỏ d ⊂ (α) .
a) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:
3(12 + 4t) +5(9 + 3t) - (1 + t) = 0
⇔ 26t + 78 = 0 ⇔ t = -3.
Tức là d ∩ (α) = M(0 ; 0 ; -2).
Trong trường hợp này d cắt (α) tại điểm M.
b) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:
(1 + t) + 3.(2 - t) + (1 + 2t) + 1 = 0
⇔ 0.t + t = 9, phương trình vô nghiệm.
Chứng tỏ d và (α) không cắt nhau., ta có d // (α).
c) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:
(1 + 1) + (1+ 2t) + (2 - 3t) - 4 = 0
⇔ 0t + 0 = 0,phương trình này có vô số nghiệm, chứng tỏ d ⊂ (α) .
a) + cos2250 = cos(1800 + 450 ) = -cos450 =
+ sin2400 = sin(1800 + 600 ) = -sin600 =
+ cot(-150 ) = -cot150 = -tan750 = -tan(300 + 450 )
= -2 - √3
+ tan 750 = cot150= 2 + √3
b)
+ sin = sin = sincos + cossin
+ cos = cos = coscos + sinsin
+ tan = tan(π + ) = tan = tan =
= 2 - √3
Đường thẳng ∆ qua điểm M(-3 ; -1 ; -1) có vectơ chỉ phương (2 ; 3 ; 2).
Mặt phẳng (α) có vectơ pháp tuyến (2 ; -2 ; 1).
Ta có M (α) và = 0 nên ∆ // (α).
Do vậy d(∆,(α)) = d(M,(α)) = .
Đường thẳng ∆ qua điểm M(-3 ; -1 ; -1) có vectơ chỉ phương (2 ; 3 ; 2).
Mặt phẳng (α) có vectơ pháp tuyến (2 ; -2 ; 1).
Ta có M (α) và = 0 nên ∆ // (α).
Do vậy d(∆,(α)) = d(M,(α)) =
a) π < a < => sina < 0, cosa < 0, tana > 0
sin2a = 2sinacosa = 2(-0,6)(-) = 0,96
cos2a = cos2 a – sin2 a = 1 – 2sin2 a = 1 - 0,72 = 0,28
tan2a = ≈ 3,1286
b) < a < π => sina > 0, cosa < 0
sina =
sin2a = 2sinacosa = 2.
cos2a = 2cos2a - 1 = 2 - 1 = -
tan2a =
c) < a < π => < 2a < 2π => sin2a < 0, cos2a > 0, tan2a < 0
sin2a = - 1 = -0,75
cos2a =
tan2a = -
223/10
233/10