K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

a) Ta có :

\(\sqrt{5X-1}\ge0\) => \(\sqrt{5X-1}+\left(1,1\right)^2\ge\left(1,1\right)^2\) Vậy GTNN là 1,21

b) Ta có 

\(\sqrt{11-3X}\ge0\) =>\(-\sqrt{11-3X}\le0\) =>\(1,21-\sqrt{11-3X}\le1,21\) GTLN là 1,21

2 tháng 2 2016

kết quả câu a) ko phải là 1 ; kết quả câu b) ko phải là 21

28 tháng 2 2018

Ta có : A=| X | + | X - 8 | = | X | + | 8 - X | \(\ge\)| X + 8 - X | = 8

=> MinA = 8 

28 tháng 2 2018

cam on

a: \(\Leftrightarrow2\sqrt{x}=4\)

=>căn x=2

=>x=4

 

24 tháng 7 2019

a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)

b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)

c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)

\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)

d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)

\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)

24 tháng 7 2019

a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)

<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)

<=> \(\sqrt{x}+8=28\)

<=> \(\sqrt{x}=28-8\)

<=> \(\sqrt{x}=20\)

<=> \(\left(\sqrt{x}\right)^2=20^2\)

<=> x = 400

=> x = 400

b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)

<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)

<=> \(3\sqrt{x}+5=\sqrt{x}+12\)

<=> \(3\sqrt{x}=\sqrt{x}+12-5\)

<=> \(3\sqrt{x}=\sqrt{x}+7\)

<=> \(3\sqrt{x}-\sqrt{x}=7\)

<=> \(2\sqrt{x}=7\)

<=> \(\sqrt{x}=\frac{7}{2}\)

<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)

<=> \(x=\frac{49}{4}\)

=> \(x=\frac{49}{4}\)

c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)

<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)

<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)

<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)

<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)

<=> \(8\sqrt{x}=6\sqrt{x}+4\)

<=> \(8\sqrt{x}-6\sqrt{x}=4\)

<=> \(2\sqrt{x}=4\)

<=> \(\sqrt{x}=2\)

<=> \(\left(\sqrt{x}\right)^2=2^2\)

<=> x = 4

=> x = 4

d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)

<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)

<=>\(2\sqrt{3x}=6\sqrt{3x}\)

<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)

<=>\(-4\sqrt{3x}=0\)

<=> \(\sqrt{3x}=0\)

<=> \(\left(\sqrt{3x}\right)^2=0^2\)

<=> 3x = 0

<=> x = 0

=> x = 0

20 tháng 10 2015

à, phần a ra x = 400. Nhầm

20 tháng 12 2015

3x=5y

=>x/5=y/3

=>2x/10=3y/9=2x-3y/10-9=5/1=5(tính chất dãy tỉ số bằng nhau)

 

a: \(=-3\left(x^2+3x+\dfrac{25}{3}\right)\)

\(=-3\left(x^2+3x+\dfrac{9}{4}+\dfrac{73}{12}\right)\)

\(=-3\left(x+\dfrac{3}{2}\right)^2-\dfrac{73}{4}< =-\dfrac{73}{4}\)

Dấu '=' xảy ra khi x=-3/2

b: \(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)

Dấu '=' xảy ra khi x=1/2

c: \(=-\left(x^2-7x-12\right)\)

\(=-\left(x^2-7x+\dfrac{49}{4}-\dfrac{97}{4}\right)\)

\(=-\left(x-\dfrac{7}{2}\right)^2+\dfrac{97}{4}< =\dfrac{97}{4}\)

Dấu '=' xảy ra khi x=7/2