Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các yếu tố cao nhất phổ biến của 147x và 98y nếu HCF (x; y) = 1.
Tìm các yếu tố phổ biến nhất của 147x và 98y nếu HCF (x; y) = 1.
Dịch câu trên như vậy à?
(2017-1):2=1008
vì mỗi tg dc tạo thành bởi 2 đoạn thẳng và có 2 cạnh là cạnh của tg khác còn tg đầu thì chỉ có 1 cạnh là cạnh của tg khác nên trừ 1 và các cạnh lặp lại 2 lần nên chia 2
Dự đoán dấu "=" xảy ra khi x = y. Gộp một cách hợp lí các số hạng để áp dụng bất đẳng thức.
\(A=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)
Dấu "=" xảy ra khi x = y = 1/2.
GTNN của A là 6.
\(B=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{8057}{4xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{8057}{\left(x+y\right)^2}=\frac{4}{\left(x+y\right)^2}+2+\frac{8057}{\left(x+y\right)^2}=8063\)
Dấu "=" xảy ra khi x = y = 1/2.
Vậy GTNN của B là 8063.
Thực hiện phép chia ta được thương là: \(2x^2+2x+1\)
Đặt \(A=2x^2+2x+1=2\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall x\)
Dấu "=" xảy ra khi: \(x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
Chúc bạn học tốt.
5x^2 +5y^2 +8xy -2x +2y +2 =0
(x^2 -2x +1)+(y^2+2y+1)+4(x^2+2xy+y^2)=0
(x-1)^2+(y+1)^2+4(x+y)^2=0
vì \(\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0,\left(x+y\right)^2\ge0\)
suy ra x=1 ,y=-1
HCF=GCD(Greatest Common Divisor)=GCF=GCM=HCD.
\(\Rightarrow\left(x;y\right)=1\Rightarrow HCF\left(147x,98y\right)=HCF\left(147,98\right)=49\)
So \(HCF\left(149x;98y\right)=49\) if \(\left(x;y\right)=1\).
(Answer in English)
Tks bạn nha