Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)1/5.8+1/8.11+1/11.14+...+1/x(x+3)=101/1540
<=>1/3(3/5.8+3/8.11+...+3/x(x+3) =101/1540
<=>1/3(1/5-1/8+1/8-1/11+...+1/x-1/x+3=101/1540
<=>1/5-1/x+3=303/1540<=>1/x+3=1/308
<=>x+3=308<=>x=305
Nguồn CHTT, hihi !
\(\frac{3^2}{2\cdot11}+\frac{3^2}{11\cdot14}+...+\frac{3^2}{197\cdot200}=\frac{3^2}{2\cdot11}+\left(\frac{3^2}{11\cdot14}+...+\frac{3^2}{197\cdot200}\right)\)
\(=\frac{9}{22}+3\left(\frac{3}{11\cdot14}+...+\frac{3}{197\cdot200}\right)=\frac{9}{22}+3\left(\frac{1}{11}-\frac{1}{14}+...+\frac{1}{197}-\frac{1}{200}\right)\)
\(=\frac{9}{22}+3\left(\frac{1}{11}-\frac{1}{200}\right)=\frac{9}{22}+3\left(\frac{200}{2200}-\frac{11}{2200}\right)=\frac{9}{22}+3\cdot\frac{189}{2200}\)
\(=3\cdot\left(\frac{3}{22}+\frac{189}{2200}\right)=3\cdot\left(\frac{300}{2200}+\frac{189}{2200}\right)=3\cdot\frac{489}{2200}=\frac{1467}{2200}\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(a^2\)- (\(\frac{3}{5}^2\)) = \(\frac{1}{1}\)-\(\frac{1}{2}\)+ \(\frac{1}{2}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{13}\)+\(\frac{1}{13}\)-\(\frac{1}{8}\)+\(\frac{1}{8}\)-\(\frac{1}{19}\)+\(\frac{1}{19}\)-\(\frac{1}{11}+\frac{1}{11}\)\(-\frac{1}{25}\)
= 1\(-\frac{1}{25}\)
= \(\frac{24}{25}\)
chúc bạn học tốt
Phần 1)Đầu tiên bạn nhân B với 1 phần 4 rồi tính đến đoạn gần cuối sẽ ra 1/3 - 1/35 rồi quy đòng rồi tính sẽ ra kêt quả cuối là 32/105 nha
Mình lười lắm nên chỉ help 1 phần thui nha sr
\(\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{65.68}\right)x=\frac{19}{68}+\frac{7}{34}\)
\(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...-\frac{1}{68}\right)x=\frac{33}{68}\)
\(\left(\frac{1}{2}-\frac{1}{68}\right)x=\frac{33}{68}\)
\(\frac{33}{68}x=\frac{33}{68}\)
\(x=\frac{33}{68}:\frac{33}{68}=1\)
\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{2006.2009}\)
\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(F=\frac{1}{5}-\frac{1}{2009}\)
\(F=\frac{2004}{10045}\)
\(F=\frac{3}{5.8}+\frac{3}{8.11}+\frac{1}{11.14}+...+\frac{3}{2006.2009}\)
\(F=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(F=\frac{1}{5}-\frac{1}{2009}\)
\(F=0\)