Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\dfrac{3}{11.12}+\dfrac{3}{12.13}+\dfrac{3}{13.14}+\dfrac{3}{14.15}\)
\(=3\left(\dfrac{1}{11.12}+\dfrac{1}{12.13}+\dfrac{1}{13.14}+\dfrac{1}{14.15}\right)\)
\(=3\left(\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\right)\)
\(=3\left(\dfrac{1}{11}-\dfrac{1}{15}\right)\)
\(=\dfrac{4}{55}\)
b/ \(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}\)
\(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
\(=\dfrac{2}{3}\)
c/ \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+.....+\dfrac{3}{97.100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+....+\dfrac{1}{97}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
d/ \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+.....+\dfrac{3}{100.103}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+....+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=\dfrac{1}{2}-\dfrac{1}{103}\)
\(=\dfrac{101}{206}\)
e/ Đặt :
\(A=\dfrac{1}{1.5}+\dfrac{1}{5.10}+....+\dfrac{1}{95.100}\)
\(\Leftrightarrow5A=\dfrac{5}{1.5}+\dfrac{5}{5.10}+....+\dfrac{5}{95.100}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+....+\dfrac{1}{95}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{100}:5=\dfrac{99}{500}\)
Dấu . là dấu nhân nhé <3
\(S=\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+...+\frac{1}{94\times97}+\frac{1}{97\times100}\)
\(S=\frac{1}{3}\times\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{94}-\frac{1}{97}+\frac{1}{97}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\times\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(S=\frac{1}{3}\times\frac{99}{100}\)
\(S=\frac{33}{100}\)
`2/[1xx4]+2/[4xx7]+...+2/[97xx100]`
`=2/3xx(3/[1xx4]+3/[4xx7]+...+3/[97xx100])`
`=2/3xx(1-1/4+1/4-1/7+...+1/97-1/100)`
`=2/3xx(1-1/100)=2/3xx99/100=33/50`
\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+...+\dfrac{2}{97.100}\)
\(=\dfrac{2}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{2}{3}.\dfrac{99}{100}\)
\(=\dfrac{33}{50}\)
sửa đề : \(F=\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(\dfrac{1}{1^2}< \dfrac{1}{1.2};\dfrac{1}{2^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
Cộng vế với vế
\(\dfrac{1}{1^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+...+\dfrac{1}{99.100}=1-\dfrac{1}{2}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}=\dfrac{99}{100}\)< 7/4
Vậy ta có đpcm
1.
=0+0-0-0+0+0-0-0+0
=0
2.
\(=2\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{94.97}+\dfrac{1}{97.100}\right)\)
\(=2.\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.9}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{2}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}.\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}.\dfrac{99}{100}=\dfrac{2.99}{3.100}=\dfrac{1.33}{1.50}=\dfrac{33}{50}\)
bởi vì các số nào nhân với 0 cũng bằng 0 em ạ
hoặc dùng cách sau :
=0.(1+2-3-4+5+6-7-8+9)
=0.1
=0
ta thấy
1.4=1(2+2)=1.2+1.2=1.2+2
2.5=2(3+2)=2.3+2.2=2.3+4
......................................
100.103=100(101+2)=100.101+100.2=100.101+200
B=1.2+2+2.3+4+3.4+6+...........................+100.101+200
đặt các phép tính nhân là C còn đặt các số tự nhiên là D
tính D trước khoảng cách các số hạng là 2
co so số hang là :(200-2):2+1=100 số hạng
D= (200+2).100:2=10100
tính C
ta thấy
1.2=1.2.3/3
2.3=2.3.4/3
................
100.101=100.101.102/3
triệt tiêu các phân số ta có
100.101.102/3-0=343400
vậy B=C+D=343400+10100=353500
Bài 1:
$M=3.4.5+4.5.6+...+13.14.15$
$4M=3.4.5(6-2)+4.5.6(7-3)+....+13.14.15(16-12)$
$=-2.3.4.5+3.4.5.6-3.4.5.6+4.5.6.7+....-12.13.14.15+13.14.15.16$
$=-2.3.4.5+13.14.15.16=43560$
$M=43560:4=10890$
Bài 2:
a.
$3M=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}$
$=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{100-97}{97.100}$
$=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}$
$=1-\frac{1}{100}=\frac{99}{100}$
$M=\frac{99}{100}:3=\frac{33}{100}$
Giờ anh đang bận hồi nữa anh giúp cho nha
nhanh nha ah, e cần gấp lắm