Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(y=x^2+5x-4\)
\(=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\left(\frac{25}{4}+4\right)\)
\(=\left(x+\frac{5}{2}\right)^2-10,25\)
\(Min_y=-10,25\Leftrightarrow x=-\frac{5}{2}\)
2) \(y=2x^2-6x+5\)
\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{1}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{1}{2}\)
\(Min_y=\frac{1}{2}\Leftrightarrow x=\frac{3}{2}\)
f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0
<=>(x-y)2+2(x-y)+1+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))
d, Ta có : \(\frac{x^3+4x^2-x-4}{x+4}\)
\(=\frac{x^2\left(x+4\right)-\left(x+4\right)}{x+4}=\frac{\left(x^2-1\right)\left(x+4\right)}{x+4}=x^2-1\)
- Thay \(x=-2\frac{1}{3}\) vào biểu thức trên ta được :
\(\left(-2\frac{1}{3}\right)^2-1=\frac{58}{9}\)
Vậy biểu thức có giá trị là \(\frac{58}{9}\) tại \(x=-2\frac{1}{3}\)
a) Đặt \(A=x^2-2x+1\)
Ta có: \(A=x^2-2x+1=\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow A_{min}=0\)
Dấu "=" xảy ra khi: \(x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(A_{min}=0\)\(\Leftrightarrow\)\(x=1\)
b) Ta có: \(M=x^2-3x+10\)
\(\Leftrightarrow M=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(\Leftrightarrow M=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\forall x\)
\(\Rightarrow\)\(M_{min}=\frac{31}{4}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\)
\(\Leftrightarrow x=\frac{3}{2}\)
Vậy \(M_{min}=\frac{31}{4}\)\(\Leftrightarrow\)\(x=\frac{3}{2}\)