Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số số hạng là:
(4096 - 2) : 2 + 1 = 2048
Tổng trên là:
(4096 + 2) . 2048 : 2 = 4196352
Ta co: 2S=2+1+1/2+1/4+...+1/2048
2S-S=2+1+1/2+1/4+...+1/2048-1-1/2-1/4-...-1/2048-1/4096
\(\Rightarrow\)S=2-1/4096 =8191/4096
Đặt A=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+................+\frac{1}{2048}+\frac{1}{4096}\)
2A=\(1+\frac{1}{2}+\frac{1}{4}+....................+\frac{1}{1024}+\frac{1}{2048}\)
2A-A=\(\left(1+\frac{1}{2}+\frac{1}{4}+................+\frac{1}{1024}+\frac{1}{2048}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...............+\frac{1}{2048}+\frac{1}{4096}\right)\)
A=\(1-\frac{1}{4096}\)
A=\(\frac{4095}{4096}\)
Từ biểu thức trên ta được
A=1/2+1/2^2+1/2^3+....+1/2^11+1/2^12
2A-A=2(1/2+1/2^2+1/2^3+....+1/2^11+1/2^12)-(1/2+1/2^2+1/2^3+....+1/2^11+1/2^12)
A=1+1/2^2+1/2^3+....+1/2^11-1/2-1/2^2-...-1/2^12
A=1/2-1/2^12
Ủng hộ cho mình nha bạn
\(A=\)\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}+\frac{1}{4096}\)
\(A=\)\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{12}}\)
\(2A=\)\(2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(2A=\)\(1+\frac{1}{2}+...+\frac{1}{2^{11}}\)
\(2A-A=\)\(\left(1+\frac{1}{2}+...+\frac{1}{2^{11}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{12}}\right)\)
\(A=1-\frac{1}{2^{12}}\)
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}+\frac{1}{4096}\)
\(\Leftrightarrow A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}+\frac{1}{2^{12}}\)
Nhân 2 vào 2 vế của biểu thức A , ta được :
\(2A=2\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}+\frac{1}{2^{12}}\right)\)
\(\Rightarrow2A=1+\frac{1}{2^1}+\frac{1}{2^2}+....+\frac{1}{2^9}+\frac{1}{2^{10}}+\frac{1}{2^{11}}\)
Lấy biểu thức 2A - A , Ta được :
\(2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}+\frac{1}{2^{12}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{12}}\)
A = 3/1×5 + 3/5×9 + 1/9×13 + ... + 9/97×101 + 3/101×105
A = 3/4 × (4/1×5 + 4/5×9 + 4/9×13 + ... + 4/97×101 + 4/101×105)
A = 3/4 × (1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/97 - 1/101 + 1/101 - 1/105)
A = 3/4 × (1 - 1/105)
A = 3/4 × 104/105
A = 26/35
B = 1/5 + 1/25 + 1/125 + 1/625 + 1/3125 + 1/15625
5B = 1 + 1/5 + 1/25 + 1/125 + 1/625 + 1/3125
5B - B = (1 + 1/5 + 1/25 + 1/125 + 1/625 + 1/3125) - (1/5 + 1/25 + 1/125 + 1/625 + 1/3125 + 1/15625)
4B = 1 - 1/15625
4B = 15624/15625
B = 15624/15625 : 4
B = 3906/15625
C = 1 + 2 + 4 + 8 + 16 + ... + 2048 + 4096
2C = 2 + 4 + 8 + 16 + 32 + ... + 4096 + 8192
2C - C = (2 + 4 + 8 + 16 + 32 + ... + 4096 + 8192) - (1 + 2 + 4 + 8 + ... + 2048 + 4096)
B = 8192 - 1
B = 8191
a)
\(A=2+4+8+...+2048\)
\(A=2+2^2+...+2^{11}\)
\(2A=2^2+2^3+...+2^{12}\)
\(2A-A=\left(2^2+2^3+...+2^{12}\right)-\left(2+2^2+...+2^{11}\right)\)
\(A=2^{12}-2\)
a) 2+4+8+16+32+64+128+512+1024+2048
b thì minh cha ra. Mình sẽ cố làm ra b mong ban thong cam va bạn nho k đung cho minh nha
SSH:(4096-2):2+1=2048
Tổng:(4096+2)x2048:2=4196352